jsdiff is a JavaScript text differencing implementation. Prior to versions 8.0.3, 5.2.2, 4.0.4, and 3.5.1, attempting to parse a patch whose filename headers contain the line break characters `\r`, `\u2028`, or `\u2029` can cause the `parsePatch` method to enter an infinite loop. It then consumes memory without limit until the process crashes due to running out of memory. Applications are therefore likely to be vulnerable to a denial-of-service attack if they call `parsePatch` with a user-provided patch as input. A large payload is not needed to trigger the vulnerability, so size limits on user input do not provide any protection. Furthermore, some applications may be vulnerable even when calling `parsePatch` on a patch generated by the application itself if the user is nonetheless able to control the filename headers (e.g. by directly providing the filenames of the files to be diffed). The `applyPatch` method is similarly affected if (and only if) called with a string representation of a patch as an argument, since under the hood it parses that string using `parsePatch`. Other methods of the library are unaffected. Finally, a second and lesser interdependent bug - a ReDOS - also exhibits when those same line break characters are present in a patch's *patch* header (also known as its "leading garbage"). A maliciously-crafted patch header of length *n* can take `parsePatch` O(*n*³) time to parse. Versions 8.0.3, 5.2.2, 4.0.4, and 3.5.1 contain a fix. As a workaround, do not attempt to parse patches that contain any of these characters: `\r`, `\u2028`, or `\u2029`.
History

Fri, 30 Jan 2026 17:30:00 +0000

Type Values Removed Values Added
Description jsdiff is a JavaScript text differencing implementation. Prior to versions 8.0.3, 5.2.2, and 4.0.4, attempting to parse a patch whose filename headers contain the line break characters `\r`, `\u2028`, or `\u2029` can cause the `parsePatch` method to enter an infinite loop. It then consumes memory without limit until the process crashes due to running out of memory. Applications are therefore likely to be vulnerable to a denial-of-service attack if they call `parsePatch` with a user-provided patch as input. A large payload is not needed to trigger the vulnerability, so size limits on user input do not provide any protection. Furthermore, some applications may be vulnerable even when calling `parsePatch` on a patch generated by the application itself if the user is nonetheless able to control the filename headers (e.g. by directly providing the filenames of the files to be diffed). The `applyPatch` method is similarly affected if (and only if) called with a string representation of a patch as an argument, since under the hood it parses that string using `parsePatch`. Other methods of the library are unaffected. Finally, a second and lesser interdependent bug - a ReDOS - also exhibits when those same line break characters are present in a patch's *patch* header (also known as its "leading garbage"). A maliciously-crafted patch header of length *n* can take `parsePatch` O(*n*³) time to parse. Versions 8.0.3, 5.2.2, and 4.0.4 contain a fix. As a workaround, do not attempt to parse patches that contain any of these characters: `\r`, `\u2028`, or `\u2029`. jsdiff is a JavaScript text differencing implementation. Prior to versions 8.0.3, 5.2.2, 4.0.4, and 3.5.1, attempting to parse a patch whose filename headers contain the line break characters `\r`, `\u2028`, or `\u2029` can cause the `parsePatch` method to enter an infinite loop. It then consumes memory without limit until the process crashes due to running out of memory. Applications are therefore likely to be vulnerable to a denial-of-service attack if they call `parsePatch` with a user-provided patch as input. A large payload is not needed to trigger the vulnerability, so size limits on user input do not provide any protection. Furthermore, some applications may be vulnerable even when calling `parsePatch` on a patch generated by the application itself if the user is nonetheless able to control the filename headers (e.g. by directly providing the filenames of the files to be diffed). The `applyPatch` method is similarly affected if (and only if) called with a string representation of a patch as an argument, since under the hood it parses that string using `parsePatch`. Other methods of the library are unaffected. Finally, a second and lesser interdependent bug - a ReDOS - also exhibits when those same line break characters are present in a patch's *patch* header (also known as its "leading garbage"). A maliciously-crafted patch header of length *n* can take `parsePatch` O(*n*³) time to parse. Versions 8.0.3, 5.2.2, 4.0.4, and 3.5.1 contain a fix. As a workaround, do not attempt to parse patches that contain any of these characters: `\r`, `\u2028`, or `\u2029`.

Wed, 28 Jan 2026 00:15:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 7.5, 'vector': 'CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H'}

threat_severity

Important


Fri, 23 Jan 2026 16:45:00 +0000

Type Values Removed Values Added
First Time appeared Kpdecker
Kpdecker jsdiff
Vendors & Products Kpdecker
Kpdecker jsdiff

Thu, 22 Jan 2026 13:15:00 +0000

Type Values Removed Values Added
Metrics ssvc

{'options': {'Automatable': 'yes', 'Exploitation': 'none', 'Technical Impact': 'partial'}, 'version': '2.0.3'}


Thu, 22 Jan 2026 02:45:00 +0000

Type Values Removed Values Added
Description jsdiff is a JavaScript text differencing implementation. Prior to versions 8.0.3, 5.2.2, and 4.0.4, attempting to parse a patch whose filename headers contain the line break characters `\r`, `\u2028`, or `\u2029` can cause the `parsePatch` method to enter an infinite loop. It then consumes memory without limit until the process crashes due to running out of memory. Applications are therefore likely to be vulnerable to a denial-of-service attack if they call `parsePatch` with a user-provided patch as input. A large payload is not needed to trigger the vulnerability, so size limits on user input do not provide any protection. Furthermore, some applications may be vulnerable even when calling `parsePatch` on a patch generated by the application itself if the user is nonetheless able to control the filename headers (e.g. by directly providing the filenames of the files to be diffed). The `applyPatch` method is similarly affected if (and only if) called with a string representation of a patch as an argument, since under the hood it parses that string using `parsePatch`. Other methods of the library are unaffected. Finally, a second and lesser interdependent bug - a ReDOS - also exhibits when those same line break characters are present in a patch's *patch* header (also known as its "leading garbage"). A maliciously-crafted patch header of length *n* can take `parsePatch` O(*n*³) time to parse. Versions 8.0.3, 5.2.2, and 4.0.4 contain a fix. As a workaround, do not attempt to parse patches that contain any of these characters: `\r`, `\u2028`, or `\u2029`.
Title jsdiff has a Denial of Service vulnerability in parsePatch and applyPatch
Weaknesses CWE-1333
CWE-400
References
Metrics cvssV4_0

{'score': 2.7, 'vector': 'CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N/E:U'}


cve-icon MITRE

Status: PUBLISHED

Assigner: GitHub_M

Published: 2026-01-22T02:23:44.059Z

Updated: 2026-02-03T16:03:16.859Z

Reserved: 2026-01-19T18:49:20.658Z

Link: CVE-2026-24001

cve-icon Vulnrichment

Updated: 2026-01-22T12:58:03.694Z

cve-icon NVD

Status : Awaiting Analysis

Published: 2026-01-22T03:15:47.627

Modified: 2026-01-30T18:16:00.123

Link: CVE-2026-24001

cve-icon Redhat

Severity : Important

Publid Date: 2026-01-22T02:23:44Z

Links: CVE-2026-24001 - Bugzilla