Filtered by CWE-908
Total 680 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40829 1 Siemens 1 Simcenter Femap 2025-12-15 7.8 High
A vulnerability has been identified in Simcenter Femap (All versions < V2512). The affected applications contains an uninitialized memory vulnerability while parsing specially crafted SLDPRT files. This could allow an attacker to execute code in the context of the current process. (ZDI-CAN-27146)
CVE-2025-38382 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix iteration of extrefs during log replay At __inode_add_ref() when processing extrefs, if we jump into the next label we have an undefined value of victim_name.len, since we haven't initialized it before we did the goto. This results in an invalid memory access in the next iteration of the loop since victim_name.len was not initialized to the length of the name of the current extref. Fix this by initializing victim_name.len with the current extref's name length.
CVE-2025-62472 1 Microsoft 23 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 20 more 2025-12-12 7.8 High
Use of uninitialized resource in Windows Remote Access Connection Manager allows an authorized attacker to elevate privileges locally.
CVE-2025-39904 1 Linux 1 Linux Kernel 2025-12-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: kexec: initialize kexec_buf struct in load_other_segments() Patch series "kexec: Fix invalid field access". The kexec_buf structure was previously declared without initialization. commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly") added a field that is always read but not consistently populated by all architectures. This un-initialized field will contain garbage. This is also triggering a UBSAN warning when the uninitialized data was accessed: ------------[ cut here ]------------ UBSAN: invalid-load in ./include/linux/kexec.h:210:10 load of value 252 is not a valid value for type '_Bool' Zero-initializing kexec_buf at declaration ensures all fields are cleanly set, preventing future instances of uninitialized memory being used. An initial fix was already landed for arm64[0], and this patchset fixes the problem on the remaining arm64 code and on riscv, as raised by Mark. Discussions about this problem could be found at[1][2]. This patch (of 3): The kexec_buf structure was previously declared without initialization. commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly") added a field that is always read but not consistently populated by all architectures. This un-initialized field will contain garbage. This is also triggering a UBSAN warning when the uninitialized data was accessed: ------------[ cut here ]------------ UBSAN: invalid-load in ./include/linux/kexec.h:210:10 load of value 252 is not a valid value for type '_Bool' Zero-initializing kexec_buf at declaration ensures all fields are cleanly set, preventing future instances of uninitialized memory being used.
CVE-2025-59194 1 Microsoft 15 Windows, Windows 11, Windows 11 22h2 and 12 more 2025-12-11 7 High
Use of uninitialized resource in Windows Kernel allows an authorized attacker to elevate privileges locally.
CVE-2025-59204 1 Microsoft 18 Windows 10 1809, Windows 10 21h2, Windows 10 21h2 and 15 more 2025-12-11 5.5 Medium
Use of uninitialized resource in Windows Management Services allows an authorized attacker to disclose information locally.
CVE-2022-50374 1 Linux 1 Linux Kernel 2025-12-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_{ldisc,serdev}: check percpu_init_rwsem() failure syzbot is reporting NULL pointer dereference at hci_uart_tty_close() [1], for rcu_sync_enter() is called without rcu_sync_init() due to hci_uart_tty_open() ignoring percpu_init_rwsem() failure. While we are at it, fix that hci_uart_register_device() ignores percpu_init_rwsem() failure and hci_uart_unregister_device() does not call percpu_free_rwsem().
CVE-2023-53341 1 Linux 1 Linux Kernel 2025-12-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: of/fdt: run soc memory setup when early_init_dt_scan_memory fails If memory has been found early_init_dt_scan_memory now returns 1. If it hasn't found any memory it will return 0, allowing other memory setup mechanisms to carry on. Previously early_init_dt_scan_memory always returned 0 without distinguishing between any kind of memory setup being done or not. Any code path after the early_init_dt_scan memory call in the ramips plat_mem_setup code wouldn't be executed anymore. Making early_init_dt_scan_memory the only way to initialize the memory. Some boards, including my mt7621 based Cudy X6 board, depend on memory initialization being done via the soc_info.mem_detect function pointer. Those wouldn't be able to obtain memory and panic the kernel during early bootup with the message "early_init_dt_alloc_memory_arch: Failed to allocate 12416 bytes align=0x40".
CVE-2023-53344 1 Linux 1 Linux Kernel 2025-12-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: bcm: bcm_tx_setup(): fix KMSAN uninit-value in vfs_write Syzkaller reported the following issue: ===================================================== BUG: KMSAN: uninit-value in aio_rw_done fs/aio.c:1520 [inline] BUG: KMSAN: uninit-value in aio_write+0x899/0x950 fs/aio.c:1600 aio_rw_done fs/aio.c:1520 [inline] aio_write+0x899/0x950 fs/aio.c:1600 io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019 __do_sys_io_submit fs/aio.c:2078 [inline] __se_sys_io_submit+0x293/0x770 fs/aio.c:2048 __x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was created at: slab_post_alloc_hook mm/slab.h:766 [inline] slab_alloc_node mm/slub.c:3452 [inline] __kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491 __do_kmalloc_node mm/slab_common.c:967 [inline] __kmalloc+0x11d/0x3b0 mm/slab_common.c:981 kmalloc_array include/linux/slab.h:636 [inline] bcm_tx_setup+0x80e/0x29d0 net/can/bcm.c:930 bcm_sendmsg+0x3a2/0xce0 net/can/bcm.c:1351 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg net/socket.c:734 [inline] sock_write_iter+0x495/0x5e0 net/socket.c:1108 call_write_iter include/linux/fs.h:2189 [inline] aio_write+0x63a/0x950 fs/aio.c:1600 io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019 __do_sys_io_submit fs/aio.c:2078 [inline] __se_sys_io_submit+0x293/0x770 fs/aio.c:2048 __x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd CPU: 1 PID: 5034 Comm: syz-executor350 Not tainted 6.2.0-rc6-syzkaller-80422-geda666ff2276 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/12/2023 ===================================================== We can follow the call chain and find that 'bcm_tx_setup' function calls 'memcpy_from_msg' to copy some content to the newly allocated frame of 'op->frames'. After that the 'len' field of copied structure being compared with some constant value (64 or 8). However, if 'memcpy_from_msg' returns an error, we will compare some uninitialized memory. This triggers 'uninit-value' issue. This patch will add 'memcpy_from_msg' possible errors processing to avoid uninit-value issue. Tested via syzkaller
CVE-2023-53351 1 Linux 1 Linux Kernel 2025-12-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Check scheduler work queue before calling timeout handling During an IGT GPU reset test we see again oops despite of commit 0c8c901aaaebc9 (drm/sched: Check scheduler ready before calling timeout handling). It uses ready condition whether to call drm_sched_fault which unwind the TDR leads to GPU reset. However it looks the ready condition is overloaded with other meanings, for example, for the following stack is related GPU reset : 0 gfx_v9_0_cp_gfx_start 1 gfx_v9_0_cp_gfx_resume 2 gfx_v9_0_cp_resume 3 gfx_v9_0_hw_init 4 gfx_v9_0_resume 5 amdgpu_device_ip_resume_phase2 does the following: /* start the ring */ gfx_v9_0_cp_gfx_start(adev); ring->sched.ready = true; The same approach is for other ASICs as well : gfx_v8_0_cp_gfx_resume gfx_v10_0_kiq_resume, etc... As a result, our GPU reset test causes GPU fault which calls unconditionally gfx_v9_0_fault and then drm_sched_fault. However now it depends on whether the interrupt service routine drm_sched_fault is executed after gfx_v9_0_cp_gfx_start is completed which sets the ready field of the scheduler to true even for uninitialized schedulers and causes oops vs no fault or when ISR drm_sched_fault is completed prior gfx_v9_0_cp_gfx_start and NULL pointer dereference does not occur. Use the field timeout_wq to prevent oops for uninitialized schedulers. The field could be initialized by the work queue of resetting the domain. v1: Corrections to commit message (Luben)
CVE-2024-29838 1 Cs-technologies 1 Evolution 2025-12-10 7.5 High
The Web interface of Evolution Controller Versions 2.04.560.31.03.2024 and below does not proper sanitize user input, allowing for an unauthenticated attacker to crash the controller software
CVE-2021-47339 1 Linux 1 Linux Kernel 2025-12-10 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-core: explicitly clear ioctl input data As seen from a recent syzbot bug report, mistakes in the compat ioctl implementation can lead to uninitialized kernel stack data getting used as input for driver ioctl handlers. The reported bug is now fixed, but it's possible that other related bugs are still present or get added in the future. As the drivers need to check user input already, the possible impact is fairly low, but it might still cause an information leak. To be on the safe side, always clear the entire ioctl buffer before calling the conversion handler functions that are meant to initialize them.
CVE-2024-38064 1 Microsoft 23 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 20 more 2025-12-09 7.5 High
Windows TCP/IP Information Disclosure Vulnerability
CVE-2024-11991 1 Dfinity 1 Motoko 2025-12-08 5.6 Medium
Motoko's incremental garbage collector is impacted by an uninitialized memory access bug, caused by incorrect use of write barriers in a few locations. This vulnerability could potentially allow unauthorized read or write access to a Canister's memory. However, exploiting this bug requires the Canister to enable the incremental garbage collector or enhanced orthogonal persistence, which are non-default features in Motoko.
CVE-2025-66566 2025-12-08 7.5 High
yawkat LZ4 Java provides LZ4 compression for Java. Insufficient clearing of the output buffer in Java-based decompressor implementations in lz4-java 1.10.0 and earlier allows remote attackers to read previous buffer contents via crafted compressed input. In applications where the output buffer is reused without being cleared, this may lead to disclosure of sensitive data. JNI-based implementations are not affected. This vulnerability is fixed in 1.10.1.
CVE-2022-50282 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: chardev: fix error handling in cdev_device_add() While doing fault injection test, I got the following report: ------------[ cut here ]------------ kobject: '(null)' (0000000039956980): is not initialized, yet kobject_put() is being called. WARNING: CPU: 3 PID: 6306 at kobject_put+0x23d/0x4e0 CPU: 3 PID: 6306 Comm: 283 Tainted: G W 6.1.0-rc2-00005-g307c1086d7c9 #1253 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:kobject_put+0x23d/0x4e0 Call Trace: <TASK> cdev_device_add+0x15e/0x1b0 __iio_device_register+0x13b4/0x1af0 [industrialio] __devm_iio_device_register+0x22/0x90 [industrialio] max517_probe+0x3d8/0x6b4 [max517] i2c_device_probe+0xa81/0xc00 When device_add() is injected fault and returns error, if dev->devt is not set, cdev_add() is not called, cdev_del() is not needed. Fix this by checking dev->devt in error path.
CVE-2022-50335 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: 9p: set req refcount to zero to avoid uninitialized usage When a new request is allocated, the refcount will be zero if it is reused, but if the request is newly allocated from slab, it is not fully initialized before being added to idr. If the p9_read_work got a response before the refcount initiated. It will use a uninitialized req, which will result in a bad request data struct. Here is the logs from syzbot. Corrupted memory at 0xffff88807eade00b [ 0xff 0x07 0x00 0x00 0x00 0x00 0x00 0x00 . . . . . . . . ] (in kfence-#110): p9_fcall_fini net/9p/client.c:248 [inline] p9_req_put net/9p/client.c:396 [inline] p9_req_put+0x208/0x250 net/9p/client.c:390 p9_client_walk+0x247/0x540 net/9p/client.c:1165 clone_fid fs/9p/fid.h:21 [inline] v9fs_fid_xattr_set+0xe4/0x2b0 fs/9p/xattr.c:118 v9fs_xattr_set fs/9p/xattr.c:100 [inline] v9fs_xattr_handler_set+0x6f/0x120 fs/9p/xattr.c:159 __vfs_setxattr+0x119/0x180 fs/xattr.c:182 __vfs_setxattr_noperm+0x129/0x5f0 fs/xattr.c:216 __vfs_setxattr_locked+0x1d3/0x260 fs/xattr.c:277 vfs_setxattr+0x143/0x340 fs/xattr.c:309 setxattr+0x146/0x160 fs/xattr.c:617 path_setxattr+0x197/0x1c0 fs/xattr.c:636 __do_sys_setxattr fs/xattr.c:652 [inline] __se_sys_setxattr fs/xattr.c:648 [inline] __ia32_sys_setxattr+0xc0/0x160 fs/xattr.c:648 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0x65/0xf0 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Below is a similar scenario, the scenario in the syzbot log looks more complicated than this one, but this patch can fix it. T21124 p9_read_work ======================== second trans ================================= p9_client_walk p9_client_rpc p9_client_prepare_req p9_tag_alloc req = kmem_cache_alloc(p9_req_cache, GFP_NOFS); tag = idr_alloc << preempted >> req->tc.tag = tag; /* req->[refcount/tag] == uninitialized */ m->rreq = p9_tag_lookup(m->client, m->rc.tag); /* increments uninitalized refcount */ refcount_set(&req->refcount, 2); /* cb drops one ref */ p9_client_cb(req) /* reader thread drops its ref: request is incorrectly freed */ p9_req_put(req) /* use after free and ref underflow */ p9_req_put(req) To fix it, we can initialize the refcount to zero before add to idr.
CVE-2025-39833 1 Linux 1 Linux Kernel 2025-12-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mISDN: hfcpci: Fix warning when deleting uninitialized timer With CONFIG_DEBUG_OBJECTS_TIMERS unloading hfcpci module leads to the following splat: [ 250.215892] ODEBUG: assert_init not available (active state 0) object: ffffffffc01a3dc0 object type: timer_list hint: 0x0 [ 250.217520] WARNING: CPU: 0 PID: 233 at lib/debugobjects.c:612 debug_print_object+0x1b6/0x2c0 [ 250.218775] Modules linked in: hfcpci(-) mISDN_core [ 250.219537] CPU: 0 UID: 0 PID: 233 Comm: rmmod Not tainted 6.17.0-rc2-g6f713187ac98 #2 PREEMPT(voluntary) [ 250.220940] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 250.222377] RIP: 0010:debug_print_object+0x1b6/0x2c0 [ 250.223131] Code: fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 75 4f 41 56 48 8b 14 dd a0 4e 01 9f 48 89 ee 48 c7 c7 20 46 01 9f e8 cb 84d [ 250.225805] RSP: 0018:ffff888015ea7c08 EFLAGS: 00010286 [ 250.226608] RAX: 0000000000000000 RBX: 0000000000000005 RCX: ffffffff9be93a95 [ 250.227708] RDX: 1ffff1100d945138 RSI: 0000000000000008 RDI: ffff88806ca289c0 [ 250.228993] RBP: ffffffff9f014a00 R08: 0000000000000001 R09: ffffed1002bd4f39 [ 250.230043] R10: ffff888015ea79cf R11: 0000000000000001 R12: 0000000000000001 [ 250.231185] R13: ffffffff9eea0520 R14: 0000000000000000 R15: ffff888015ea7cc8 [ 250.232454] FS: 00007f3208f01540(0000) GS:ffff8880caf5a000(0000) knlGS:0000000000000000 [ 250.233851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 250.234856] CR2: 00007f32090a7421 CR3: 0000000004d63000 CR4: 00000000000006f0 [ 250.236117] Call Trace: [ 250.236599] <TASK> [ 250.236967] ? trace_irq_enable.constprop.0+0xd4/0x130 [ 250.237920] debug_object_assert_init+0x1f6/0x310 [ 250.238762] ? __pfx_debug_object_assert_init+0x10/0x10 [ 250.239658] ? __lock_acquire+0xdea/0x1c70 [ 250.240369] __try_to_del_timer_sync+0x69/0x140 [ 250.241172] ? __pfx___try_to_del_timer_sync+0x10/0x10 [ 250.242058] ? __timer_delete_sync+0xc6/0x120 [ 250.242842] ? lock_acquire+0x30/0x80 [ 250.243474] ? __timer_delete_sync+0xc6/0x120 [ 250.244262] __timer_delete_sync+0x98/0x120 [ 250.245015] HFC_cleanup+0x10/0x20 [hfcpci] [ 250.245704] __do_sys_delete_module+0x348/0x510 [ 250.246461] ? __pfx___do_sys_delete_module+0x10/0x10 [ 250.247338] do_syscall_64+0xc1/0x360 [ 250.247924] entry_SYSCALL_64_after_hwframe+0x77/0x7f Fix this by initializing hfc_tl timer with DEFINE_TIMER macro. Also, use mod_timer instead of manual timeout update.
CVE-2025-31361 2 Broadcom, Dell 2 Bcm5820x, Controlvault3 2025-12-01 8.7 High
A privilege escalation vulnerability exists in the ControlVault WBDI Driver WBIO_USH_ADD_RECORD functionality of Dell ControlVault3 prior to 5.15.14.19 and Dell ControlVault3 Plus prior to 6.2.36.47. A specially crafted WinBioControlUnit call can lead to privilege escalation. An attacker can issue an api call to trigger this vulnerability.
CVE-2025-31649 2 Broadcom, Dell 2 Bcm5820x, Controlvault3 2025-12-01 8.7 High
A hard-coded password vulnerability exists in the ControlVault WBDI Driver functionality of Dell ControlVault3 prior to 5.15.14.19 and Dell ControlVault3 Plus prior to 6.2.36.47. A specially crafted ControlVault API call can lead to execute priviledged operation. An attacker can issue an api call to trigger this vulnerability.