Filtered by vendor Linux
Subscriptions
Total
16298 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-40230 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue. | ||||
| CVE-2025-40238 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix IPsec cleanup over MPV device When we do mlx5e_detach_netdev() we eventually disable blocking events notifier, among those events are IPsec MPV events from IB to core. So before disabling those blocking events, make sure to also unregister the devcom device and mark all this device operations as complete, in order to prevent the other device from using invalid netdev during future devcom events which could cause the trace below. BUG: kernel NULL pointer dereference, address: 0000000000000010 PGD 146427067 P4D 146427067 PUD 146488067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1 Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40 RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206 RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00 RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000 R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600 R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80 FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x130 ? asm_exc_page_fault+0x22/0x30 ? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core] mlx5_devcom_send_event+0x8c/0x170 [mlx5_core] blocking_event+0x17b/0x230 [mlx5_core] notifier_call_chain+0x35/0xa0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core] mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib] mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib] ? idr_alloc_cyclic+0x50/0xb0 ? __kmalloc_cache_noprof+0x167/0x340 ? __kmalloc_noprof+0x1a7/0x430 __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe9/0x310 [mlx5_ib] ? kernfs_add_one+0x107/0x150 ? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib] auxiliary_bus_probe+0x3e/0x90 really_probe+0xc5/0x3a0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x62d/0x830 __auxiliary_device_add+0x3b/0xa0 ? auxiliary_device_init+0x41/0x90 add_adev+0xd1/0x150 [mlx5_core] mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core] esw_mode_change+0x6c/0xc0 [mlx5_core] mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core] devlink_nl_eswitch_set_doit+0x60/0xe0 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x180/0x2b0 ? devlink_get_from_attrs_lock+0x170/0x170 ? devlink_nl_eswitch_get_doit+0x290/0x290 ? devlink_nl_pre_doit_port_optional+0x50/0x50 ? genl_family_rcv_msg_dumpit+0xf0/0xf0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1fc/0x2d0 netlink_sendmsg+0x1e4/0x410 __sock_sendmsg+0x38/0x60 ? sockfd_lookup_light+0x12/0x60 __sys_sendto+0x105/0x160 ? __sys_recvmsg+0x4e/0x90 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x4c/0x100 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f27bc91b13a Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff ---truncated--- | ||||
| CVE-2025-40224 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: hwmon: (cgbc-hwmon) Add missing NULL check after devm_kzalloc() The driver allocates memory for sensor data using devm_kzalloc(), but did not check if the allocation succeeded. In case of memory allocation failure, dereferencing the NULL pointer would lead to a kernel crash. Add a NULL pointer check and return -ENOMEM to handle allocation failure properly. | ||||
| CVE-2025-40260 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix scx_enable() crash on helper kthread creation failure A crash was observed when the sched_ext selftests runner was terminated with Ctrl+\ while test 15 was running: NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0 LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0 Call Trace: scx_enable.constprop.0+0x32c/0x12b0 (unreliable) bpf_struct_ops_link_create+0x18c/0x22c __sys_bpf+0x23f8/0x3044 sys_bpf+0x2c/0x6c system_call_exception+0x124/0x320 system_call_vectored_common+0x15c/0x2ec kthread_run_worker() returns an ERR_PTR() on failure rather than NULL, but the current code in scx_alloc_and_add_sched() only checks for a NULL helper. Incase of failure on SIGQUIT, the error is not handled in scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an error pointer. Error handling is fixed in scx_alloc_and_add_sched() to propagate PTR_ERR() into ret, so that scx_enable() jumps to the existing error path, avoiding random dereference on failure. | ||||
| CVE-2025-40222 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tty: serial: sh-sci: fix RSCI FIFO overrun handling The receive error handling code is shared between RSCI and all other SCIF port types, but the RSCI overrun_reg is specified as a memory offset, while for other SCIF types it is an enum value used to index into the sci_port_params->regs array, as mentioned above the sci_serial_in() function. For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call inside the sci_handle_fifo_overrun() function to index outside the bounds of the regs array, which currently has a size of 20, as specified by SCI_NR_REGS. Because of this, we end up accessing memory outside of RSCI's rsci_port_params structure, which, when interpreted as a plat_sci_reg, happens to have a non-zero size, causing the following WARN when sci_serial_in() is called, as the accidental size does not match the supported register sizes. The existence of the overrun_reg needs to be checked because SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not present in the regs array. Avoid calling sci_getreg() for port types which don't use standard register handling. Use the ops->read_reg() and ops->write_reg() functions to properly read and write registers for RSCI, and change the type of the status variable to accommodate the 32-bit CSR register. sci_getreg() and sci_serial_in() are also called with overrun_reg in the sci_mpxed_interrupt() interrupt handler, but that code path is not used for RSCI, as it does not have a muxed interrupt. ------------[ cut here ]------------ Invalid register access WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : sci_serial_in+0x38/0xac lr : sci_serial_in+0x38/0xac sp : ffff800080003e80 x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80 x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000 x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720 x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720 x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48 x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48 x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80 Call trace: sci_serial_in+0x38/0xac (P) sci_handle_fifo_overrun.isra.0+0x70/0x134 sci_er_interrupt+0x50/0x39c __handle_irq_event_percpu+0x48/0x140 handle_irq_event+0x44/0xb0 handle_fasteoi_irq+0xf4/0x1a0 handle_irq_desc+0x34/0x58 generic_handle_domain_irq+0x1c/0x28 gic_handle_irq+0x4c/0x140 call_on_irq_stack+0x30/0x48 do_interrupt_handler+0x80/0x84 el1_interrupt+0x34/0x68 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 default_idle_call+0x28/0x58 (P) do_idle+0x1f8/0x250 cpu_startup_entry+0x34/0x3c rest_init+0xd8/0xe0 console_on_rootfs+0x0/0x6c __primary_switched+0x88/0x90 ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2025-40244 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix KMSAN uninit-value issue in __hfsplus_ext_cache_extent() The syzbot reported issue in __hfsplus_ext_cache_extent(): [ 70.194323][ T9350] BUG: KMSAN: uninit-value in __hfsplus_ext_cache_extent+0x7d0/0x990 [ 70.195022][ T9350] __hfsplus_ext_cache_extent+0x7d0/0x990 [ 70.195530][ T9350] hfsplus_file_extend+0x74f/0x1cf0 [ 70.195998][ T9350] hfsplus_get_block+0xe16/0x17b0 [ 70.196458][ T9350] __block_write_begin_int+0x962/0x2ce0 [ 70.196959][ T9350] cont_write_begin+0x1000/0x1950 [ 70.197416][ T9350] hfsplus_write_begin+0x85/0x130 [ 70.197873][ T9350] generic_perform_write+0x3e8/0x1060 [ 70.198374][ T9350] __generic_file_write_iter+0x215/0x460 [ 70.198892][ T9350] generic_file_write_iter+0x109/0x5e0 [ 70.199393][ T9350] vfs_write+0xb0f/0x14e0 [ 70.199771][ T9350] ksys_write+0x23e/0x490 [ 70.200149][ T9350] __x64_sys_write+0x97/0xf0 [ 70.200570][ T9350] x64_sys_call+0x3015/0x3cf0 [ 70.201065][ T9350] do_syscall_64+0xd9/0x1d0 [ 70.201506][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 70.202054][ T9350] [ 70.202279][ T9350] Uninit was created at: [ 70.202693][ T9350] __kmalloc_noprof+0x621/0xf80 [ 70.203149][ T9350] hfsplus_find_init+0x8d/0x1d0 [ 70.203602][ T9350] hfsplus_file_extend+0x6ca/0x1cf0 [ 70.204087][ T9350] hfsplus_get_block+0xe16/0x17b0 [ 70.204561][ T9350] __block_write_begin_int+0x962/0x2ce0 [ 70.205074][ T9350] cont_write_begin+0x1000/0x1950 [ 70.205547][ T9350] hfsplus_write_begin+0x85/0x130 [ 70.206017][ T9350] generic_perform_write+0x3e8/0x1060 [ 70.206519][ T9350] __generic_file_write_iter+0x215/0x460 [ 70.207042][ T9350] generic_file_write_iter+0x109/0x5e0 [ 70.207552][ T9350] vfs_write+0xb0f/0x14e0 [ 70.207961][ T9350] ksys_write+0x23e/0x490 [ 70.208375][ T9350] __x64_sys_write+0x97/0xf0 [ 70.208810][ T9350] x64_sys_call+0x3015/0x3cf0 [ 70.209255][ T9350] do_syscall_64+0xd9/0x1d0 [ 70.209680][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 70.210230][ T9350] [ 70.210454][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Not tainted 6.12.0-rc5 #5 [ 70.211174][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 70.212115][ T9350] ===================================================== [ 70.212734][ T9350] Disabling lock debugging due to kernel taint [ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic set ... [ 70.213858][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Tainted: G B 6.12.0-rc5 #5 [ 70.214679][ T9350] Tainted: [B]=BAD_PAGE [ 70.215057][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 70.215999][ T9350] Call Trace: [ 70.216309][ T9350] <TASK> [ 70.216585][ T9350] dump_stack_lvl+0x1fd/0x2b0 [ 70.217025][ T9350] dump_stack+0x1e/0x30 [ 70.217421][ T9350] panic+0x502/0xca0 [ 70.217803][ T9350] ? kmsan_get_metadata+0x13e/0x1c0 [ 70.218294][ Message fromT sy9350] kmsan_report+0x296/slogd@syzkaller 0x2aat Aug 18 22:11:058 ... kernel :[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic [ 70.220179][ T9350] ? kmsan_get_metadata+0x13e/0x1c0 set ... [ 70.221254][ T9350] ? __msan_warning+0x96/0x120 [ 70.222066][ T9350] ? __hfsplus_ext_cache_extent+0x7d0/0x990 [ 70.223023][ T9350] ? hfsplus_file_extend+0x74f/0x1cf0 [ 70.224120][ T9350] ? hfsplus_get_block+0xe16/0x17b0 [ 70.224946][ T9350] ? __block_write_begin_int+0x962/0x2ce0 [ 70.225756][ T9350] ? cont_write_begin+0x1000/0x1950 [ 70.226337][ T9350] ? hfsplus_write_begin+0x85/0x130 [ 70.226852][ T9350] ? generic_perform_write+0x3e8/0x1060 [ 70.227405][ T9350] ? __generic_file_write_iter+0x215/0x460 [ 70.227979][ T9350] ? generic_file_write_iter+0x109/0x5e0 [ 70.228540][ T9350] ? vfs_write+0xb0f/0x14e0 [ 70.228997][ T9350] ? ksys_write+0x23e/0x490 ---truncated--- | ||||
| CVE-2025-40228 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: catch commit test ctx alloc failure Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation". DAMON sysfs interface dynamically allocates and uses a damon_ctx object for testing if given inputs for online DAMON parameters update is valid. The object is being used without an allocation failure check, and leaked when the test succeeds. Fix the two bugs. This patch (of 2): The damon_ctx for testing online DAMON parameters commit inputs is used without its allocation failure check. This could result in an invalid memory access. Fix it by directly returning an error when the allocation failed. | ||||
| CVE-2025-62189 | 4 Linux, Logstare, Microsoft and 1 more | 5 Linux, Linux Kernel, Collector and 2 more | 2025-12-04 | N/A |
| LogStare Collector contains an incorrect authorization vulnerability in UserRegistration. If exploited, a non-administrative user may create a new user account by sending a crafted HTTP request. | ||||
| CVE-2022-50297 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: verify the expected usb_endpoints are present The bug arises when a USB device claims to be an ATH9K but doesn't have the expected endpoints. (In this case there was an interrupt endpoint where the driver expected a bulk endpoint.) The kernel needs to be able to handle such devices without getting an internal error. usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Modules linked in: CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events request_firmware_work_func RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Call Trace: ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline] ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019 ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline] ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242 request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097 process_one_work+0x9af/0x1600 kernel/workqueue.c:2279 worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425 kthread+0x3b4/0x4a0 kernel/kthread.c:313 ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299 Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2022-50298 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: slimbus: qcom-ngd: cleanup in probe error path Add proper error path in probe() to cleanup resources previously acquired/allocated to fix warnings visible during probe deferral: notifier callback qcom_slim_ngd_ssr_notify already registered WARNING: CPU: 6 PID: 70 at kernel/notifier.c:28 notifier_chain_register+0x5c/0x90 Modules linked in: CPU: 6 PID: 70 Comm: kworker/u16:1 Not tainted 6.0.0-rc3-next-20220830 #380 Call trace: notifier_chain_register+0x5c/0x90 srcu_notifier_chain_register+0x44/0x90 qcom_register_ssr_notifier+0x38/0x4c qcom_slim_ngd_ctrl_probe+0xd8/0x400 platform_probe+0x6c/0xe0 really_probe+0xbc/0x2d4 __driver_probe_device+0x78/0xe0 driver_probe_device+0x3c/0x12c __device_attach_driver+0xb8/0x120 bus_for_each_drv+0x78/0xd0 __device_attach+0xa8/0x1c0 device_initial_probe+0x18/0x24 bus_probe_device+0xa0/0xac deferred_probe_work_func+0x88/0xc0 process_one_work+0x1d4/0x320 worker_thread+0x2cc/0x44c kthread+0x110/0x114 ret_from_fork+0x10/0x20 | ||||
| CVE-2022-50299 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: md: Replace snprintf with scnprintf Current code produces a warning as shown below when total characters in the constituent block device names plus the slashes exceeds 200. snprintf() returns the number of characters generated from the given input, which could cause the expression “200 – len” to wrap around to a large positive number. Fix this by using scnprintf() instead, which returns the actual number of characters written into the buffer. [ 1513.267938] ------------[ cut here ]------------ [ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510 [ 1513.267944] Modules linked in: <snip> [ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu [ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510 <-snip-> [ 1513.267982] Call Trace: [ 1513.267986] snprintf+0x45/0x70 [ 1513.267990] ? disk_name+0x71/0xa0 [ 1513.267993] dump_zones+0x114/0x240 [raid0] [ 1513.267996] ? _cond_resched+0x19/0x40 [ 1513.267998] raid0_run+0x19e/0x270 [raid0] [ 1513.268000] md_run+0x5e0/0xc50 [ 1513.268003] ? security_capable+0x3f/0x60 [ 1513.268005] do_md_run+0x19/0x110 [ 1513.268006] md_ioctl+0x195e/0x1f90 [ 1513.268007] blkdev_ioctl+0x91f/0x9f0 [ 1513.268010] block_ioctl+0x3d/0x50 [ 1513.268012] do_vfs_ioctl+0xa9/0x640 [ 1513.268014] ? __fput+0x162/0x260 [ 1513.268016] ksys_ioctl+0x75/0x80 [ 1513.268017] __x64_sys_ioctl+0x1a/0x20 [ 1513.268019] do_syscall_64+0x5e/0x200 [ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9 | ||||
| CVE-2022-50300 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when handling missing device in read_one_chunk Store the error code before freeing the extent_map. Though it's reference counted structure, in that function it's the first and last allocation so this would lead to a potential use-after-free. The error can happen eg. when chunk is stored on a missing device and the degraded mount option is missing. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721 | ||||
| CVE-2022-50301 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: iommu/omap: Fix buffer overflow in debugfs There are two issues here: 1) The "len" variable needs to be checked before the very first write. Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a buffer overflow. 2) The snprintf() function returns the number of bytes that *would* have been copied if there were enough space. But we want to know the number of bytes which were *actually* copied so use scnprintf() instead. | ||||
| CVE-2022-50302 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: lockd: set other missing fields when unlocking files vfs_lock_file() expects the struct file_lock to be fully initialised by the caller. Re-exported NFSv3 has been seen to Oops if the fl_file field is NULL. | ||||
| CVE-2022-50303 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix double release compute pasid If kfd_process_device_init_vm returns failure after vm is converted to compute vm and vm->pasid set to compute pasid, KFD will not take pdd->drm_file reference. As a result, drm close file handler maybe called to release the compute pasid before KFD process destroy worker to release the same pasid and set vm->pasid to zero, this generates below WARNING backtrace and NULL pointer access. Add helper amdgpu_amdkfd_gpuvm_set_vm_pasid and call it at the last step of kfd_process_device_init_vm, to ensure vm pasid is the original pasid if acquiring vm failed or is the compute pasid with pdd->drm_file reference taken to avoid double release same pasid. amdgpu: Failed to create process VM object ida_free called for id=32770 which is not allocated. WARNING: CPU: 57 PID: 72542 at ../lib/idr.c:522 ida_free+0x96/0x140 RIP: 0010:ida_free+0x96/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10 BUG: kernel NULL pointer dereference, address: 0000000000000000 RIP: 0010:ida_free+0x76/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10 | ||||
| CVE-2022-50304 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mtd: core: fix possible resource leak in init_mtd() I got the error report while inject fault in init_mtd(): sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0' Call Trace: <TASK> dump_stack_lvl+0x67/0x83 sysfs_warn_dup+0x60/0x70 sysfs_create_dir_ns+0x109/0x120 kobject_add_internal+0xce/0x2f0 kobject_add+0x98/0x110 device_add+0x179/0xc00 device_create_groups_vargs+0xf4/0x100 device_create+0x7b/0xb0 bdi_register_va.part.13+0x58/0x2d0 bdi_register+0x9b/0xb0 init_mtd+0x62/0x171 [mtd] do_one_initcall+0x6c/0x3c0 do_init_module+0x58/0x222 load_module+0x268e/0x27d0 __do_sys_finit_module+0xd5/0x140 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register things with the same name in the same directory. Error registering mtd class or bdi: -17 If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered, as a result, we can't load the mtd module again, to fix this by calling bdi_unregister(mtd_bdi) after out_procfs label. | ||||
| CVE-2022-50305 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: sof_es8336: fix possible use-after-free in sof_es8336_remove() sof_es8336_remove() calls cancel_delayed_work(). However, that function does not wait until the work function finishes. This means that the callback function may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling cancel_delayed_work_sync(), which ensures that the work is properly cancelled, no longer running, and unable to re-schedule itself. | ||||
| CVE-2022-50307 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix out-of-bounds access on cio_ignore free The channel-subsystem-driver scans for newly available devices whenever device-IDs are removed from the cio_ignore list using a command such as: echo free >/proc/cio_ignore Since an I/O device scan might interfer with running I/Os, commit 172da89ed0ea ("s390/cio: avoid excessive path-verification requests") introduced an optimization to exclude online devices from the scan. The newly added check for online devices incorrectly assumes that an I/O-subchannel's drvdata points to a struct io_subchannel_private. For devices that are bound to a non-default I/O subchannel driver, such as the vfio_ccw driver, this results in an out-of-bounds read access during each scan. Fix this by changing the scan logic to rely on a driver-independent online indication. For this we can use struct subchannel->config.ena, which is the driver's requested subchannel-enabled state. Since I/Os can only be started on enabled subchannels, this matches the intent of the original optimization of not scanning devices where I/O might be running. | ||||
| CVE-2022-50308 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference. | ||||
| CVE-2022-50309 | 1 Linux | 1 Linux Kernel | 2025-12-04 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: xilinx: vipp: Fix refcount leak in xvip_graph_dma_init of_get_child_by_name() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak. | ||||