Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16215 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-53759 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: hidraw: fix data race on device refcount The hidraw_open() function increments the hidraw device reference counter. The counter has no dedicated synchronization mechanism, resulting in a potential data race when concurrently opening a device. The race is a regression introduced by commit 8590222e4b02 ("HID: hidraw: Replace hidraw device table mutex with a rwsem"). While minors_rwsem is intended to protect the hidraw_table itself, by instead acquiring the lock for writing, the reference counter is also protected. This is symmetrical to hidraw_release().
CVE-2023-53746 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/vfio-ap: fix memory leak in vfio_ap device driver The device release callback function invoked to release the matrix device uses the dev_get_drvdata(device *dev) function to retrieve the pointer to the vfio_matrix_dev object in order to free its storage. The problem is, this object is not stored as drvdata with the device; since the kfree function will accept a NULL pointer, the memory for the vfio_matrix_dev object is never freed. Since the device being released is contained within the vfio_matrix_dev object, the container_of macro will be used to retrieve its pointer.
CVE-2025-40316 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix device use-after-free on unbind A recent change fixed device reference leaks when looking up drm platform device driver data during bind() but failed to remove a partial fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix kobject put for component sub-drivers"). This results in a reference imbalance on component bind() failures and on unbind() which could lead to a user-after-free. Make sure to only drop the references after retrieving the driver data by effectively reverting the previous partial fix. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2025-40317 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regmap: slimbus: fix bus_context pointer in regmap init calls Commit 4e65bda8273c ("ASoC: wcd934x: fix error handling in wcd934x_codec_parse_data()") revealed the problem in the slimbus regmap. That commit breaks audio playback, for instance, on sdm845 Thundercomm Dragonboard 845c board: Unable to handle kernel paging request at virtual address ffff8000847cbad4 ... CPU: 5 UID: 0 PID: 776 Comm: aplay Not tainted 6.18.0-rc1-00028-g7ea30958b305 #11 PREEMPT Hardware name: Thundercomm Dragonboard 845c (DT) ... Call trace: slim_xfer_msg+0x24/0x1ac [slimbus] (P) slim_read+0x48/0x74 [slimbus] regmap_slimbus_read+0x18/0x24 [regmap_slimbus] _regmap_raw_read+0xe8/0x174 _regmap_bus_read+0x44/0x80 _regmap_read+0x60/0xd8 _regmap_update_bits+0xf4/0x140 _regmap_select_page+0xa8/0x124 _regmap_raw_write_impl+0x3b8/0x65c _regmap_bus_raw_write+0x60/0x80 _regmap_write+0x58/0xc0 regmap_write+0x4c/0x80 wcd934x_hw_params+0x494/0x8b8 [snd_soc_wcd934x] snd_soc_dai_hw_params+0x3c/0x7c [snd_soc_core] __soc_pcm_hw_params+0x22c/0x634 [snd_soc_core] dpcm_be_dai_hw_params+0x1d4/0x38c [snd_soc_core] dpcm_fe_dai_hw_params+0x9c/0x17c [snd_soc_core] snd_pcm_hw_params+0x124/0x464 [snd_pcm] snd_pcm_common_ioctl+0x110c/0x1820 [snd_pcm] snd_pcm_ioctl+0x34/0x4c [snd_pcm] __arm64_sys_ioctl+0xac/0x104 invoke_syscall+0x48/0x104 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xec el0t_64_sync_handler+0xa0/0xf0 el0t_64_sync+0x198/0x19c The __devm_regmap_init_slimbus() started to be used instead of __regmap_init_slimbus() after the commit mentioned above and turns out the incorrect bus_context pointer (3rd argument) was used in __devm_regmap_init_slimbus(). It should be just "slimbus" (which is equal to &slimbus->dev). Correct it. The wcd934x codec seems to be the only or the first user of devm_regmap_init_slimbus() but we should fix it till the point where __devm_regmap_init_slimbus() was introduced therefore two "Fixes" tags. While at this, also correct the same argument in __regmap_init_slimbus().
CVE-2022-50619 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr() If the number of pages from the userptr BO differs from the SG BO then the allocated memory for the SG table doesn't get freed before returning -EINVAL, which may lead to a memory leak in some error paths. Fix this by checking the number of pages before allocating memory for the SG table.
CVE-2023-53760 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: mcq: Fix &hwq->cq_lock deadlock issue When ufshcd_err_handler() is executed, CQ event interrupt can enter waiting for the same lock. This can happen in ufshcd_handle_mcq_cq_events() and also in ufs_mtk_mcq_intr(). The following warning message will be generated when &hwq->cq_lock is used in IRQ context with IRQ enabled. Use ufshcd_mcq_poll_cqe_lock() with spin_lock_irqsave instead of spin_lock to resolve the deadlock issue. [name:lockdep&]WARNING: inconsistent lock state [name:lockdep&]-------------------------------- [name:lockdep&]inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. [name:lockdep&]kworker/u16:4/260 [HC0[0]:SC0[0]:HE1:SE1] takes: ffffff8028444600 (&hwq->cq_lock){?.-.}-{2:2}, at: ufshcd_mcq_poll_cqe_lock+0x30/0xe0 [name:lockdep&]{IN-HARDIRQ-W} state was registered at: lock_acquire+0x17c/0x33c _raw_spin_lock+0x5c/0x7c ufshcd_mcq_poll_cqe_lock+0x30/0xe0 ufs_mtk_mcq_intr+0x60/0x1bc [ufs_mediatek_mod] __handle_irq_event_percpu+0x140/0x3ec handle_irq_event+0x50/0xd8 handle_fasteoi_irq+0x148/0x2b0 generic_handle_domain_irq+0x4c/0x6c gic_handle_irq+0x58/0x134 call_on_irq_stack+0x40/0x74 do_interrupt_handler+0x84/0xe4 el1_interrupt+0x3c/0x78 <snip> Possible unsafe locking scenario: CPU0 ---- lock(&hwq->cq_lock); <Interrupt> lock(&hwq->cq_lock); *** DEADLOCK *** 2 locks held by kworker/u16:4/260: [name:lockdep&] stack backtrace: CPU: 7 PID: 260 Comm: kworker/u16:4 Tainted: G S W OE 6.1.17-mainline-android14-2-g277223301adb #1 Workqueue: ufs_eh_wq_0 ufshcd_err_handler Call trace: dump_backtrace+0x10c/0x160 show_stack+0x20/0x30 dump_stack_lvl+0x98/0xd8 dump_stack+0x20/0x60 print_usage_bug+0x584/0x76c mark_lock_irq+0x488/0x510 mark_lock+0x1ec/0x25c __lock_acquire+0x4d8/0xffc lock_acquire+0x17c/0x33c _raw_spin_lock+0x5c/0x7c ufshcd_mcq_poll_cqe_lock+0x30/0xe0 ufshcd_poll+0x68/0x1b0 ufshcd_transfer_req_compl+0x9c/0xc8 ufshcd_err_handler+0x3bc/0xea0 process_one_work+0x2f4/0x7e8 worker_thread+0x234/0x450 kthread+0x110/0x134 ret_from_fork+0x10/0x20
CVE-2022-50620 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to invalidate dcc->f2fs_issue_discard in error path Syzbot reports a NULL pointer dereference issue as below: __refcount_add include/linux/refcount.h:193 [inline] __refcount_inc include/linux/refcount.h:250 [inline] refcount_inc include/linux/refcount.h:267 [inline] get_task_struct include/linux/sched/task.h:110 [inline] kthread_stop+0x34/0x1c0 kernel/kthread.c:703 f2fs_stop_discard_thread+0x3c/0x5c fs/f2fs/segment.c:1638 kill_f2fs_super+0x5c/0x194 fs/f2fs/super.c:4522 deactivate_locked_super+0x70/0xe8 fs/super.c:332 deactivate_super+0xd0/0xd4 fs/super.c:363 cleanup_mnt+0x1f8/0x234 fs/namespace.c:1186 __cleanup_mnt+0x20/0x30 fs/namespace.c:1193 task_work_run+0xc4/0x14c kernel/task_work.c:177 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x26c/0xbe0 kernel/exit.c:795 do_group_exit+0x60/0xe8 kernel/exit.c:925 __do_sys_exit_group kernel/exit.c:936 [inline] __se_sys_exit_group kernel/exit.c:934 [inline] __wake_up_parent+0x0/0x40 kernel/exit.c:934 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 The root cause of this issue is in error path of f2fs_start_discard_thread(), it missed to invalidate dcc->f2fs_issue_discard, later kthread_stop() may access invalid pointer.
CVE-2022-50618 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: meson-gx: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). Fix this by checking the return value and goto error path which will call mmc_free_host().
CVE-2022-50615 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel/uncore: Fix reference count leak in snr_uncore_mmio_map() pci_get_device() will increase the reference count for the returned pci_dev, so snr_uncore_get_mc_dev() will return a pci_dev with its reference count increased. We need to call pci_dev_put() to decrease the reference count. Let's add the missing pci_dev_put().
CVE-2022-50628 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/gud: Fix UBSAN warning UBSAN complains about invalid value for bool: [ 101.165172] [drm] Initialized gud 1.0.0 20200422 for 2-3.2:1.0 on minor 1 [ 101.213360] gud 2-3.2:1.0: [drm] fb1: guddrmfb frame buffer device [ 101.213426] usbcore: registered new interface driver gud [ 101.989431] ================================================================================ [ 101.989441] UBSAN: invalid-load in linux/include/linux/iosys-map.h:253:9 [ 101.989447] load of value 121 is not a valid value for type '_Bool' [ 101.989451] CPU: 1 PID: 455 Comm: kworker/1:6 Not tainted 5.18.0-rc5-gud-5.18-rc5 #3 [ 101.989456] Hardware name: Hewlett-Packard HP EliteBook 820 G1/1991, BIOS L71 Ver. 01.44 04/12/2018 [ 101.989459] Workqueue: events_long gud_flush_work [gud] [ 101.989471] Call Trace: [ 101.989474] <TASK> [ 101.989479] dump_stack_lvl+0x49/0x5f [ 101.989488] dump_stack+0x10/0x12 [ 101.989493] ubsan_epilogue+0x9/0x3b [ 101.989498] __ubsan_handle_load_invalid_value.cold+0x44/0x49 [ 101.989504] dma_buf_vmap.cold+0x38/0x3d [ 101.989511] ? find_busiest_group+0x48/0x300 [ 101.989520] drm_gem_shmem_vmap+0x76/0x1b0 [drm_shmem_helper] [ 101.989528] drm_gem_shmem_object_vmap+0x9/0xb [drm_shmem_helper] [ 101.989535] drm_gem_vmap+0x26/0x60 [drm] [ 101.989594] drm_gem_fb_vmap+0x47/0x150 [drm_kms_helper] [ 101.989630] gud_prep_flush+0xc1/0x710 [gud] [ 101.989639] ? _raw_spin_lock+0x17/0x40 [ 101.989648] gud_flush_work+0x1e0/0x430 [gud] [ 101.989653] ? __switch_to+0x11d/0x470 [ 101.989664] process_one_work+0x21f/0x3f0 [ 101.989673] worker_thread+0x200/0x3e0 [ 101.989679] ? rescuer_thread+0x390/0x390 [ 101.989684] kthread+0xfd/0x130 [ 101.989690] ? kthread_complete_and_exit+0x20/0x20 [ 101.989696] ret_from_fork+0x22/0x30 [ 101.989706] </TASK> [ 101.989708] ================================================================================ The source of this warning is in iosys_map_clear() called from dma_buf_vmap(). It conditionally sets values based on map->is_iomem. The iosys_map variables are allocated uninitialized on the stack leading to ->is_iomem having all kinds of values and not only 0/1. Fix this by zeroing the iosys_map variables.
CVE-2023-53762 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: Fix UAF in hci_disconnect_all_sync Use-after-free can occur in hci_disconnect_all_sync if a connection is deleted by concurrent processing of a controller event. To prevent this the code now tries to iterate over the list backwards to ensure the links are cleanup before its parents, also it no longer relies on a cursor, instead it always uses the last element since hci_abort_conn_sync is guaranteed to call hci_conn_del. UAF crash log: ================================================================== BUG: KASAN: slab-use-after-free in hci_set_powered_sync (net/bluetooth/hci_sync.c:5424) [bluetooth] Read of size 8 at addr ffff888009d9c000 by task kworker/u9:0/124 CPU: 0 PID: 124 Comm: kworker/u9:0 Tainted: G W 6.5.0-rc1+ #10 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014 Workqueue: hci0 hci_cmd_sync_work [bluetooth] Call Trace: <TASK> dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0xdd/0x160 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth] kasan_report+0xa6/0xe0 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth] ? __pfx_set_powered_sync+0x10/0x10 [bluetooth] hci_set_powered_sync+0x2c9/0x4a0 [bluetooth] ? __pfx_hci_set_powered_sync+0x10/0x10 [bluetooth] ? __pfx_lock_release+0x10/0x10 ? __pfx_set_powered_sync+0x10/0x10 [bluetooth] hci_cmd_sync_work+0x137/0x220 [bluetooth] process_one_work+0x526/0x9d0 ? __pfx_process_one_work+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? mark_held_locks+0x1a/0x90 worker_thread+0x92/0x630 ? __pfx_worker_thread+0x10/0x10 kthread+0x196/0x1e0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> Allocated by task 1782: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 __kasan_kmalloc+0x8f/0xa0 hci_conn_add+0xa5/0xa80 [bluetooth] hci_bind_cis+0x881/0x9b0 [bluetooth] iso_connect_cis+0x121/0x520 [bluetooth] iso_sock_connect+0x3f6/0x790 [bluetooth] __sys_connect+0x109/0x130 __x64_sys_connect+0x40/0x50 do_syscall_64+0x60/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Freed by task 695: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x50 __kasan_slab_free+0x10a/0x180 __kmem_cache_free+0x14d/0x2e0 device_release+0x5d/0xf0 kobject_put+0xdf/0x270 hci_disconn_complete_evt+0x274/0x3a0 [bluetooth] hci_event_packet+0x579/0x7e0 [bluetooth] hci_rx_work+0x287/0xaa0 [bluetooth] process_one_work+0x526/0x9d0 worker_thread+0x92/0x630 kthread+0x196/0x1e0 ret_from_fork+0x2c/0x50 ==================================================================
CVE-2023-53747 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vc_screen: reload load of struct vc_data pointer in vcs_write() to avoid UAF After a call to console_unlock() in vcs_write() the vc_data struct can be freed by vc_port_destruct(). Because of that, the struct vc_data pointer must be reloaded in the while loop in vcs_write() after console_lock() to avoid a UAF when vcs_size() is called. Syzkaller reported a UAF in vcs_size(). BUG: KASAN: slab-use-after-free in vcs_size (drivers/tty/vt/vc_screen.c:215) Read of size 4 at addr ffff8880beab89a8 by task repro_vcs_size/4119 Call Trace: <TASK> __asan_report_load4_noabort (mm/kasan/report_generic.c:380) vcs_size (drivers/tty/vt/vc_screen.c:215) vcs_write (drivers/tty/vt/vc_screen.c:664) vfs_write (fs/read_write.c:582 fs/read_write.c:564) ... <TASK> Allocated by task 1213: kmalloc_trace (mm/slab_common.c:1064) vc_allocate (./include/linux/slab.h:559 ./include/linux/slab.h:680 drivers/tty/vt/vt.c:1078 drivers/tty/vt/vt.c:1058) con_install (drivers/tty/vt/vt.c:3334) tty_init_dev (drivers/tty/tty_io.c:1303 drivers/tty/tty_io.c:1415 drivers/tty/tty_io.c:1392) tty_open (drivers/tty/tty_io.c:2082 drivers/tty/tty_io.c:2128) chrdev_open (fs/char_dev.c:415) do_dentry_open (fs/open.c:921) vfs_open (fs/open.c:1052) ... Freed by task 4116: kfree (mm/slab_common.c:1016) vc_port_destruct (drivers/tty/vt/vt.c:1044) tty_port_destructor (drivers/tty/tty_port.c:296) tty_port_put (drivers/tty/tty_port.c:312) vt_disallocate_all (drivers/tty/vt/vt_ioctl.c:662 (discriminator 2)) vt_ioctl (drivers/tty/vt/vt_ioctl.c:903) tty_ioctl (drivers/tty/tty_io.c:2778) ... The buggy address belongs to the object at ffff8880beab8800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 424 bytes inside of freed 1024-byte region [ffff8880beab8800, ffff8880beab8c00) The buggy address belongs to the physical page: page:00000000afc77580 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xbeab8 head:00000000afc77580 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 000fffffc0010200 ffff888100042dc0 ffffea000426de00 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880beab8880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880beab8900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880beab8980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880beab8a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880beab8a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Disabling lock debugging due to kernel taint
CVE-2023-53745 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: um: vector: Fix memory leak in vector_config If the return value of the uml_parse_vector_ifspec function is NULL, we should call kfree(params) to prevent memory leak.
CVE-2023-53751 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: cifs: fix potential use-after-free bugs in TCP_Server_Info::hostname TCP_Server_Info::hostname may be updated once or many times during reconnect, so protect its access outside reconnect path as well and then prevent any potential use-after-free bugs.
CVE-2023-53768 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regmap-irq: Fix out-of-bounds access when allocating config buffers When allocating the 2D array for handling IRQ type registers in regmap_add_irq_chip_fwnode(), the intent is to allocate a matrix with num_config_bases rows and num_config_regs columns. This is currently handled by allocating a buffer to hold a pointer for each row (i.e. num_config_bases). After that, the logic attempts to allocate the memory required to hold the register configuration for each row. However, instead of doing this allocation for each row (i.e. num_config_bases allocations), the logic erroneously does this allocation num_config_regs number of times. This scenario can lead to out-of-bounds accesses when num_config_regs is greater than num_config_bases. Fix this by updating the terminating condition of the loop that allocates the memory for holding the register configuration to allocate memory only for each row in the matrix. Amit Pundir reported a crash that was occurring on his db845c device due to memory corruption (see "Closes" tag for Amit's report). The KASAN report below helped narrow it down to this issue: [ 14.033877][ T1] ================================================================== [ 14.042507][ T1] BUG: KASAN: invalid-access in regmap_add_irq_chip_fwnode+0x594/0x1364 [ 14.050796][ T1] Write of size 8 at addr 06ffff8081021850 by task init/1 [ 14.242004][ T1] The buggy address belongs to the object at ffffff8081021850 [ 14.242004][ T1] which belongs to the cache kmalloc-8 of size 8 [ 14.255669][ T1] The buggy address is located 0 bytes inside of [ 14.255669][ T1] 8-byte region [ffffff8081021850, ffffff8081021858)
CVE-2023-53758 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: atmel-quadspi: Free resources even if runtime resume failed in .remove() An early error exit in atmel_qspi_remove() doesn't prevent the device unbind. So this results in an spi controller with an unbound parent and unmapped register space (because devm_ioremap_resource() is undone). So using the remaining spi controller probably results in an oops. Instead unregister the controller unconditionally and only skip hardware access and clk disable. Also add a warning about resume failing and return zero unconditionally. The latter has the only effect to suppress a less helpful error message by the spi core.
CVE-2022-50630 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: hugetlb: fix UAF in hugetlb_handle_userfault The vma_lock and hugetlb_fault_mutex are dropped before handling userfault and reacquire them again after handle_userfault(), but reacquire the vma_lock could lead to UAF[1,2] due to the following race, hugetlb_fault hugetlb_no_page /*unlock vma_lock */ hugetlb_handle_userfault handle_userfault /* unlock mm->mmap_lock*/ vm_mmap_pgoff do_mmap mmap_region munmap_vma_range /* clean old vma */ /* lock vma_lock again <--- UAF */ /* unlock vma_lock */ Since the vma_lock will unlock immediately after hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in hugetlb_handle_userfault() to fix the issue. [1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/ [2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/
CVE-2025-40318 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once hci_cmd_sync_dequeue_once() does lookup and then cancel the entry under two separate lock sections. Meanwhile, hci_cmd_sync_work() can also delete the same entry, leading to double list_del() and "UAF". Fix this by holding cmd_sync_work_lock across both lookup and cancel, so that the entry cannot be removed concurrently.
CVE-2022-50629 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rsi: Fix memory leak in rsi_coex_attach() The coex_cb needs to be freed when rsi_create_kthread() failed in rsi_coex_attach().
CVE-2022-50625 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: serial: amba-pl011: avoid SBSA UART accessing DMACR register Chapter "B Generic UART" in "ARM Server Base System Architecture" [1] documentation describes a generic UART interface. Such generic UART does not support DMA. In current code, sbsa_uart_pops and amba_pl011_pops share the same stop_rx operation, which will invoke pl011_dma_rx_stop, leading to an access of the DMACR register. This commit adds a using_rx_dma check in pl011_dma_rx_stop to avoid the access to DMACR register for SBSA UARTs which does not support DMA. When the kernel enables DMA engine with "CONFIG_DMA_ENGINE=y", Linux SBSA PL011 driver will access PL011 DMACR register in some functions. For most real SBSA Pl011 hardware implementations, the DMACR write behaviour will be ignored. So these DMACR operations will not cause obvious problems. But for some virtual SBSA PL011 hardware, like Xen virtual SBSA PL011 (vpl011) device, the behaviour might be different. Xen vpl011 emulation will inject a data abort to guest, when guest is accessing an unimplemented UART register. As Xen VPL011 is SBSA compatible, it will not implement DMACR register. So when Linux SBSA PL011 driver access DMACR register, it will get an unhandled data abort fault and the application will get a segmentation fault: Unhandled fault at 0xffffffc00944d048 Mem abort info: ESR = 0x96000000 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x00: ttbr address size fault Data abort info: ISV = 0, ISS = 0x00000000 CM = 0, WnR = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000020e2e000 [ffffffc00944d048] pgd=100000003ffff803, p4d=100000003ffff803, pud=100000003ffff803, pmd=100000003fffa803, pte=006800009c090f13 Internal error: ttbr address size fault: 96000000 [#1] PREEMPT SMP ... Call trace: pl011_stop_rx+0x70/0x80 tty_port_shutdown+0x7c/0xb4 tty_port_close+0x60/0xcc uart_close+0x34/0x8c tty_release+0x144/0x4c0 __fput+0x78/0x220 ____fput+0x1c/0x30 task_work_run+0x88/0xc0 do_notify_resume+0x8d0/0x123c el0_svc+0xa8/0xc0 el0t_64_sync_handler+0xa4/0x130 el0t_64_sync+0x1a0/0x1a4 Code: b9000083 b901f001 794038a0 8b000042 (b9000041) ---[ end trace 83dd93df15c3216f ]--- note: bootlogd[132] exited with preempt_count 1 /etc/rcS.d/S07bootlogd: line 47: 132 Segmentation fault start-stop-daemon This has been discussed in the Xen community, and we think it should fix this in Linux. See [2] for more information. [1] https://developer.arm.com/documentation/den0094/c/?lang=en [2] https://lists.xenproject.org/archives/html/xen-devel/2022-11/msg00543.html