Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16214 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53791 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: md: fix warning for holder mismatch from export_rdev() Commit a1d767191096 ("md: use mddev->external to select holder in export_rdev()") fix the problem that 'claim_rdev' is used for blkdev_get_by_dev() while 'rdev' is used for blkdev_put(). However, if mddev->external is changed from 0 to 1, then 'rdev' is used for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And this problem can be reporduced reliably by following: New file: mdadm/tests/23rdev-lifetime devname=${dev0##*/} devt=`cat /sys/block/$devname/dev` pid="" runtime=2 clean_up_test() { pill -9 $pid echo clear > /sys/block/md0/md/array_state } trap 'clean_up_test' EXIT add_by_sysfs() { while true; do echo $devt > /sys/block/md0/md/new_dev done } remove_by_sysfs(){ while true; do echo remove > /sys/block/md0/md/dev-${devname}/state done } echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed" add_by_sysfs & pid="$pid $!" remove_by_sysfs & pid="$pid $!" sleep $runtime exit 0 Test cmd: ./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime Test result: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330 Modules linked in: multipath md_mod loop CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50 RIP: 0010:blkdev_put+0x27c/0x330 Call Trace: <TASK> export_rdev.isra.23+0x50/0xa0 [md_mod] mddev_unlock+0x19d/0x300 [md_mod] rdev_attr_store+0xec/0x190 [md_mod] sysfs_kf_write+0x52/0x70 kernfs_fop_write_iter+0x19a/0x2a0 vfs_write+0x3b5/0x770 ksys_write+0x74/0x150 __x64_sys_write+0x22/0x30 do_syscall_64+0x40/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Fix the problem by recording if 'rdev' is used as holder. | ||||
| CVE-2022-50631 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of fdt buffer This is reported by kmemleak detector: unreferenced object 0xff60000082864000 (size 9588): comm "kexec", pid 146, jiffies 4294900634 (age 64.788s) hex dump (first 32 bytes): d0 0d fe ed 00 00 12 ed 00 00 00 48 00 00 11 40 ...........H...@ 00 00 00 28 00 00 00 11 00 00 00 02 00 00 00 00 ...(............ backtrace: [<00000000f95b17c4>] kmemleak_alloc+0x34/0x3e [<00000000b9ec8e3e>] kmalloc_order+0x9c/0xc4 [<00000000a95cf02e>] kmalloc_order_trace+0x34/0xb6 [<00000000f01e68b4>] __kmalloc+0x5c2/0x62a [<000000002bd497b2>] kvmalloc_node+0x66/0xd6 [<00000000906542fa>] of_kexec_alloc_and_setup_fdt+0xa6/0x6ea [<00000000e1166bde>] elf_kexec_load+0x206/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via kvmalloc() to store fdt. While it's not freed back to system when kexec kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing riscv specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there. | ||||
| CVE-2023-53864 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/mxsfb: Disable overlay plane in mxsfb_plane_overlay_atomic_disable() When disabling overlay plane in mxsfb_plane_overlay_atomic_update(), overlay plane's framebuffer pointer is NULL. So, dereferencing it would cause a kernel Oops(NULL pointer dereferencing). Fix the issue by disabling overlay plane in mxsfb_plane_overlay_atomic_disable() instead. | ||||
| CVE-2023-53807 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: clk: clocking-wizard: Fix Oops in clk_wzrd_register_divider() Smatch detected this potential error pointer dereference clk_wzrd_register_divider(). If devm_clk_hw_register() fails then it sets "hw" to an error pointer and then dereferences it on the next line. Return the error directly instead. | ||||
| CVE-2023-53845 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix infinite loop in nilfs_mdt_get_block() If the disk image that nilfs2 mounts is corrupted and a virtual block address obtained by block lookup for a metadata file is invalid, nilfs_bmap_lookup_at_level() may return the same internal return code as -ENOENT, meaning the block does not exist in the metadata file. This duplication of return codes confuses nilfs_mdt_get_block(), causing it to read and create a metadata block indefinitely. In particular, if this happens to the inode metadata file, ifile, semaphore i_rwsem can be left held, causing task hangs in lock_mount. Fix this issue by making nilfs_bmap_lookup_at_level() treat virtual block address translation failures with -ENOENT as metadata corruption instead of returning the error code. | ||||
| CVE-2023-53863 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netlink: do not hard code device address lenth in fdb dumps syzbot reports that some netdev devices do not have a six bytes address [1] Replace ETH_ALEN by dev->addr_len. [1] (Case of a device where dev->addr_len = 4) BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in copyout+0xb8/0x100 lib/iov_iter.c:169 instrument_copy_to_user include/linux/instrumented.h:114 [inline] copyout+0xb8/0x100 lib/iov_iter.c:169 _copy_to_iter+0x6d8/0x1d00 lib/iov_iter.c:536 copy_to_iter include/linux/uio.h:206 [inline] simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:527 skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline] netlink_recvmsg+0x4ae/0x15a0 net/netlink/af_netlink.c:1970 sock_recvmsg_nosec net/socket.c:1019 [inline] sock_recvmsg net/socket.c:1040 [inline] ____sys_recvmsg+0x283/0x7f0 net/socket.c:2722 ___sys_recvmsg+0x223/0x840 net/socket.c:2764 do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858 __sys_recvmmsg net/socket.c:2937 [inline] __do_sys_recvmmsg net/socket.c:2960 [inline] __se_sys_recvmmsg net/socket.c:2953 [inline] __x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: __nla_put lib/nlattr.c:1009 [inline] nla_put+0x1c6/0x230 lib/nlattr.c:1067 nlmsg_populate_fdb_fill+0x2b8/0x600 net/core/rtnetlink.c:4071 nlmsg_populate_fdb net/core/rtnetlink.c:4418 [inline] ndo_dflt_fdb_dump+0x616/0x840 net/core/rtnetlink.c:4456 rtnl_fdb_dump+0x14ff/0x1fc0 net/core/rtnetlink.c:4629 netlink_dump+0x9d1/0x1310 net/netlink/af_netlink.c:2268 netlink_recvmsg+0xc5c/0x15a0 net/netlink/af_netlink.c:1995 sock_recvmsg_nosec+0x7a/0x120 net/socket.c:1019 ____sys_recvmsg+0x664/0x7f0 net/socket.c:2720 ___sys_recvmsg+0x223/0x840 net/socket.c:2764 do_recvmmsg+0x4f9/0xfd0 net/socket.c:2858 __sys_recvmmsg net/socket.c:2937 [inline] __do_sys_recvmmsg net/socket.c:2960 [inline] __se_sys_recvmmsg net/socket.c:2953 [inline] __x64_sys_recvmmsg+0x397/0x490 net/socket.c:2953 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was created at: slab_post_alloc_hook+0x12d/0xb60 mm/slab.h:716 slab_alloc_node mm/slub.c:3451 [inline] __kmem_cache_alloc_node+0x4ff/0x8b0 mm/slub.c:3490 kmalloc_trace+0x51/0x200 mm/slab_common.c:1057 kmalloc include/linux/slab.h:559 [inline] __hw_addr_create net/core/dev_addr_lists.c:60 [inline] __hw_addr_add_ex+0x2e5/0x9e0 net/core/dev_addr_lists.c:118 __dev_mc_add net/core/dev_addr_lists.c:867 [inline] dev_mc_add+0x9a/0x130 net/core/dev_addr_lists.c:885 igmp6_group_added+0x267/0xbc0 net/ipv6/mcast.c:680 ipv6_mc_up+0x296/0x3b0 net/ipv6/mcast.c:2754 ipv6_mc_remap+0x1e/0x30 net/ipv6/mcast.c:2708 addrconf_type_change net/ipv6/addrconf.c:3731 [inline] addrconf_notify+0x4d3/0x1d90 net/ipv6/addrconf.c:3699 notifier_call_chain kernel/notifier.c:93 [inline] raw_notifier_call_chain+0xe4/0x430 kernel/notifier.c:461 call_netdevice_notifiers_info net/core/dev.c:1935 [inline] call_netdevice_notifiers_extack net/core/dev.c:1973 [inline] call_netdevice_notifiers+0x1ee/0x2d0 net/core/dev.c:1987 bond_enslave+0xccd/0x53f0 drivers/net/bonding/bond_main.c:1906 do_set_master net/core/rtnetlink.c:2626 [inline] rtnl_newlink_create net/core/rtnetlink.c:3460 [inline] __rtnl_newlink net/core/rtnetlink.c:3660 [inline] rtnl_newlink+0x378c/0x40e0 net/core/rtnetlink.c:3673 rtnetlink_rcv_msg+0x16a6/0x1840 net/core/rtnetlink.c:6395 netlink_rcv_skb+0x371/0x650 net/netlink/af_netlink.c:2546 rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6413 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf28/0x1230 net/netlink/af_ ---truncated--- | ||||
| CVE-2023-53823 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: block/rq_qos: protect rq_qos apis with a new lock commit 50e34d78815e ("block: disable the elevator int del_gendisk") move rq_qos_exit() from disk_release() to del_gendisk(), this will introduce some problems: 1) If rq_qos_add() is triggered by enabling iocost/iolatency through cgroupfs, then it can concurrent with del_gendisk(), it's not safe to write 'q->rq_qos' concurrently. 2) Activate cgroup policy that is relied on rq_qos will call rq_qos_add() and blkcg_activate_policy(), and if rq_qos_exit() is called in the middle, null-ptr-dereference will be triggered in blkcg_activate_policy(). 3) blkg_conf_open_bdev() can call blkdev_get_no_open() first to find the disk, then if rq_qos_exit() from del_gendisk() is done before rq_qos_add(), then memory will be leaked. This patch add a new disk level mutex 'rq_qos_mutex': 1) The lock will protect rq_qos_exit() directly. 2) For wbt that doesn't relied on blk-cgroup, rq_qos_add() can only be called from disk initialization for now because wbt can't be destructed until rq_qos_exit(), so it's safe not to protect wbt for now. Hoever, in case that rq_qos dynamically destruction is supported in the furture, this patch also protect rq_qos_add() from wbt_init() directly, this is enough because blk-sysfs already synchronize writers with disk removal. 3) For iocost and iolatency, in order to synchronize disk removal and cgroup configuration, the lock is held after blkdev_get_no_open() from blkg_conf_open_bdev(), and is released in blkg_conf_exit(). In order to fix the above memory leak, disk_live() is checked after holding the new lock. | ||||
| CVE-2023-53813 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix rbtree traversal bug in ext4_mb_use_preallocated During allocations, while looking for preallocations(PA) in the per inode rbtree, we can't do a direct traversal of the tree because ext4_mb_discard_group_preallocation() can paralelly mark the pa deleted and that can cause direct traversal to skip some entries. This was leading to a BUG_ON() being hit [1] when we missed a PA that could satisfy our request and ultimately tried to create a new PA that would overlap with the missed one. To makes sure we handle that case while still keeping the performance of the rbtree, we make use of the fact that the only pa that could possibly overlap the original goal start is the one that satisfies the below conditions: 1. It must have it's logical start immediately to the left of (ie less than) original logical start. 2. It must not be deleted To find this pa we use the following traversal method: 1. Descend into the rbtree normally to find the immediate neighboring PA. Here we keep descending irrespective of if the PA is deleted or if it overlaps with our request etc. The goal is to find an immediately adjacent PA. 2. If the found PA is on right of original goal, use rb_prev() to find the left adjacent PA. 3. Check if this PA is deleted and keep moving left with rb_prev() until a non deleted PA is found. 4. This is the PA we are looking for. Now we can check if it can satisfy the original request and proceed accordingly. This approach also takes care of having deleted PAs in the tree. (While we are at it, also fix a possible overflow bug in calculating the end of a PA) [1] https://lore.kernel.org/linux-ext4/CA+G9fYv2FRpLqBZf34ZinR8bU2_ZRAUOjKAD3+tKRFaEQHtt8Q@mail.gmail.com/ | ||||
| CVE-2023-53803 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix slab-out-of-bounds in ses_enclosure_data_process() A fix for: BUG: KASAN: slab-out-of-bounds in ses_enclosure_data_process+0x949/0xe30 [ses] Read of size 1 at addr ffff88a1b043a451 by task systemd-udevd/3271 Checking after (and before in next loop) addl_desc_ptr[1] is sufficient, we expect the size to be sanitized before first access to addl_desc_ptr[1]. Make sure we don't walk beyond end of page. | ||||
| CVE-2022-50637 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut() If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(), the program will return, resulting in "table" resource is not released. | ||||
| CVE-2022-50634 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe() cw_bat_probe() calls create_singlethread_workqueue() and not checked the ret value, which may return NULL. And a null-ptr-deref may happen: cw_bat_probe() create_singlethread_workqueue() # failed, cw_bat->wq is NULL queue_delayed_work() queue_delayed_work_on() __queue_delayed_work() # warning here, but continue __queue_work() # access wq->flags, null-ptr-deref Check the ret value and return -ENOMEM if it is NULL. | ||||
| CVE-2022-50639 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: io-wq: Fix memory leak in worker creation If the CPU mask allocation for a node fails, then the memory allocated for the 'io_wqe' struct of the current node doesn't get freed on the error handling path, since it has not yet been added to the 'wqes' array. This was spotted when fuzzing v6.1-rc1 with Syzkaller: BUG: memory leak unreferenced object 0xffff8880093d5000 (size 1024): comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720 [<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130 [<000000004e107011>] io_wq_create+0x7b9/0xdc0 [<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d [<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba [<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce [<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80 [<000000008a8a7508>] do_syscall_64+0x5d/0x90 [<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd | ||||
| CVE-2023-53851 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: Drop aux devices together with DP controller Using devres to depopulate the aux bus made sure that upon a probe deferral the EDP panel device would be destroyed and recreated upon next attempt. But the struct device which the devres is tied to is the DPUs (drm_dev->dev), which may be happen after the DP controller is torn down. Indications of this can be seen in the commonly seen EDID-hexdump full of zeros in the log, or the occasional/rare KASAN fault where the panel's attempt to read the EDID information causes a use after free on DP resources. It's tempting to move the devres to the DP controller's struct device, but the resources used by the device(s) on the aux bus are explicitly torn down in the error path. The KASAN-reported use-after-free also remains, as the DP aux "module" explicitly frees its devres-allocated memory in this code path. As such, explicitly depopulate the aux bus in the error path, and in the component unbind path, to avoid these issues. Patchwork: https://patchwork.freedesktop.org/patch/542163/ | ||||
| CVE-2023-53817 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: crypto: lib/mpi - avoid null pointer deref in mpi_cmp_ui() During NVMeTCP Authentication a controller can trigger a kernel oops by specifying the 8192 bit Diffie Hellman group and passing a correctly sized, but zeroed Diffie Hellamn value. mpi_cmp_ui() was detecting this if the second parameter was 0, but 1 is passed from dh_is_pubkey_valid(). This causes the null pointer u->d to be dereferenced towards the end of mpi_cmp_ui() | ||||
| CVE-2022-50645 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper() As the comment of pci_get_domain_bus_and_slot() says, it returns a PCI device with refcount incremented, so it doesn't need to call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI device needs to be put in the error path. | ||||
| CVE-2022-50671 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix "kernel NULL pointer dereference" error When rxe_queue_init in the function rxe_qp_init_req fails, both qp->req.task.func and qp->req.task.arg are not initialized. Because of creation of qp fails, the function rxe_create_qp will call rxe_qp_do_cleanup to handle allocated resource. Before calling __rxe_do_task, both qp->req.task.func and qp->req.task.arg should be checked. | ||||
| CVE-2023-53832 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix null-ptr-deref in raid10_sync_request init_resync() inits mempool and sets conf->have_replacemnt at the beginning of sync, close_sync() frees the mempool when sync is completed. After [1] recovery might be skipped and init_resync() is called but close_sync() is not. null-ptr-deref occurs with r10bio->dev[i].repl_bio. The following is one way to reproduce the issue. 1) create a array, wait for resync to complete, mddev->recovery_cp is set to MaxSector. 2) recovery is woken and it is skipped. conf->have_replacement is set to 0 in init_resync(). close_sync() not called. 3) some io errors and rdev A is set to WantReplacement. 4) a new device is added and set to A's replacement. 5) recovery is woken, A have replacement, but conf->have_replacemnt is 0. r10bio->dev[i].repl_bio will not be alloced and null-ptr-deref occurs. Fix it by not calling init_resync() if recovery skipped. [1] commit 7e83ccbecd60 ("md/raid10: Allow skipping recovery when clean arrays are assembled") | ||||
| CVE-2022-50669 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: misc: ocxl: fix possible name leak in ocxl_file_register_afu() If device_register() returns error in ocxl_file_register_afu(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(), and info is freed in info_release(). | ||||
| CVE-2023-53853 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: netlink: annotate accesses to nlk->cb_running Both netlink_recvmsg() and netlink_native_seq_show() read nlk->cb_running locklessly. Use READ_ONCE() there. Add corresponding WRITE_ONCE() to netlink_dump() and __netlink_dump_start() syzbot reported: BUG: KCSAN: data-race in __netlink_dump_start / netlink_recvmsg write to 0xffff88813ea4db59 of 1 bytes by task 28219 on cpu 0: __netlink_dump_start+0x3af/0x4d0 net/netlink/af_netlink.c:2399 netlink_dump_start include/linux/netlink.h:308 [inline] rtnetlink_rcv_msg+0x70f/0x8c0 net/core/rtnetlink.c:6130 netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2577 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6192 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1942 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] sock_write_iter+0x1aa/0x230 net/socket.c:1138 call_write_iter include/linux/fs.h:1851 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x463/0x760 fs/read_write.c:584 ksys_write+0xeb/0x1a0 fs/read_write.c:637 __do_sys_write fs/read_write.c:649 [inline] __se_sys_write fs/read_write.c:646 [inline] __x64_sys_write+0x42/0x50 fs/read_write.c:646 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff88813ea4db59 of 1 bytes by task 28222 on cpu 1: netlink_recvmsg+0x3b4/0x730 net/netlink/af_netlink.c:2022 sock_recvmsg_nosec+0x4c/0x80 net/socket.c:1017 ____sys_recvmsg+0x2db/0x310 net/socket.c:2718 ___sys_recvmsg net/socket.c:2762 [inline] do_recvmmsg+0x2e5/0x710 net/socket.c:2856 __sys_recvmmsg net/socket.c:2935 [inline] __do_sys_recvmmsg net/socket.c:2958 [inline] __se_sys_recvmmsg net/socket.c:2951 [inline] __x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x00 -> 0x01 | ||||
| CVE-2022-50642 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_typec: zero out stale pointers `cros_typec_get_switch_handles` allocates four pointers when obtaining type-c switch handles. These pointers are all freed if failing to obtain any of them; therefore, pointers in `port` become stale. The stale pointers eventually cause use-after-free or double free in later code paths. Zeroing out all pointer fields after freeing to eliminate these stale pointers. | ||||