Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 15918 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40228 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: catch commit test ctx alloc failure Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation". DAMON sysfs interface dynamically allocates and uses a damon_ctx object for testing if given inputs for online DAMON parameters update is valid. The object is being used without an allocation failure check, and leaked when the test succeeds. Fix the two bugs. This patch (of 2): The damon_ctx for testing online DAMON parameters commit inputs is used without its allocation failure check. This could result in an invalid memory access. Fix it by directly returning an error when the allocation failed.
CVE-2025-40229 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: fix potential memory leak by cleaning ops_filter in damon_destroy_scheme Currently, damon_destroy_scheme() only cleans up the filter list but leaves ops_filter untouched, which could lead to memory leaks when a scheme is destroyed. This patch ensures both filter and ops_filter are properly freed in damon_destroy_scheme(), preventing potential memory leaks.
CVE-2025-40230 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue.
CVE-2025-40216 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: don't rely on user vaddr alignment There is no guaranteed alignment for user pointers, however the calculation of an offset of the first page into a folio after coalescing uses some weird bit mask logic, get rid of it.
CVE-2025-40227 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: dealloc commit test ctx always The damon_ctx for testing online DAMON parameters commit inputs is deallocated only when the test fails. This means memory is leaked for every successful online DAMON parameters commit. Fix the leak by always deallocating it.
CVE-2025-40221 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: pci: mg4b: fix uninitialized iio scan data Fix potential leak of uninitialized stack data to userspace by ensuring that the `scan` structure is zeroed before use.
CVE-2025-40233 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: clear extent cache after moving/defragmenting extents The extent map cache can become stale when extents are moved or defragmented, causing subsequent operations to see outdated extent flags. This triggers a BUG_ON in ocfs2_refcount_cal_cow_clusters(). The problem occurs when: 1. copy_file_range() creates a reflinked extent with OCFS2_EXT_REFCOUNTED 2. ioctl(FITRIM) triggers ocfs2_move_extents() 3. __ocfs2_move_extents_range() reads and caches the extent (flags=0x2) 4. ocfs2_move_extent()/ocfs2_defrag_extent() calls __ocfs2_move_extent() which clears OCFS2_EXT_REFCOUNTED flag on disk (flags=0x0) 5. The extent map cache is not invalidated after the move 6. Later write() operations read stale cached flags (0x2) but disk has updated flags (0x0), causing a mismatch 7. BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) triggers Fix by clearing the extent map cache after each extent move/defrag operation in __ocfs2_move_extents_range(). This ensures subsequent operations read fresh extent data from disk.
CVE-2025-40255 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower() The ethtool tsconfig Netlink path can trigger a null pointer dereference. A call chain such as: tsconfig_prepare_data() -> dev_get_hwtstamp_phylib() -> vlan_hwtstamp_get() -> generic_hwtstamp_get_lower() -> generic_hwtstamp_ioctl_lower() results in generic_hwtstamp_ioctl_lower() being called with kernel_cfg->ifr as NULL. The generic_hwtstamp_ioctl_lower() function does not expect a NULL ifr and dereferences it, leading to a system crash. Fix this by adding a NULL check for kernel_cfg->ifr in generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL.
CVE-2025-40242 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix unlikely race in gdlm_put_lock In gdlm_put_lock(), there is a small window of time in which the DFL_UNMOUNT flag has been set but the lockspace hasn't been released, yet. In that window, dlm may still call gdlm_ast() and gdlm_bast(). To prevent it from dereferencing freed glock objects, only free the glock if the lockspace has actually been released.
CVE-2025-40245 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nios2: ensure that memblock.current_limit is set when setting pfn limits On nios2, with CONFIG_FLATMEM set, the kernel relies on memblock_get_current_limit() to determine the limits of mem_map, in particular for max_low_pfn. Unfortunately, memblock.current_limit is only default initialized to MEMBLOCK_ALLOC_ANYWHERE at this point of the bootup, potentially leading to situations where max_low_pfn can erroneously exceed the value of max_pfn and, thus, the valid range of available DRAM. This can in turn cause kernel-level paging failures, e.g.: [ 76.900000] Unable to handle kernel paging request at virtual address 20303000 [ 76.900000] ea = c0080890, ra = c000462c, cause = 14 [ 76.900000] Kernel panic - not syncing: Oops [ 76.900000] ---[ end Kernel panic - not syncing: Oops ]--- This patch fixes this by pre-calculating memblock.current_limit based on the upper limits of the available memory ranges via adjust_lowmem_bounds, a simplified version of the equivalent implementation within the arm architecture.
CVE-2025-40244 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix KMSAN uninit-value issue in __hfsplus_ext_cache_extent() The syzbot reported issue in __hfsplus_ext_cache_extent(): [ 70.194323][ T9350] BUG: KMSAN: uninit-value in __hfsplus_ext_cache_extent+0x7d0/0x990 [ 70.195022][ T9350] __hfsplus_ext_cache_extent+0x7d0/0x990 [ 70.195530][ T9350] hfsplus_file_extend+0x74f/0x1cf0 [ 70.195998][ T9350] hfsplus_get_block+0xe16/0x17b0 [ 70.196458][ T9350] __block_write_begin_int+0x962/0x2ce0 [ 70.196959][ T9350] cont_write_begin+0x1000/0x1950 [ 70.197416][ T9350] hfsplus_write_begin+0x85/0x130 [ 70.197873][ T9350] generic_perform_write+0x3e8/0x1060 [ 70.198374][ T9350] __generic_file_write_iter+0x215/0x460 [ 70.198892][ T9350] generic_file_write_iter+0x109/0x5e0 [ 70.199393][ T9350] vfs_write+0xb0f/0x14e0 [ 70.199771][ T9350] ksys_write+0x23e/0x490 [ 70.200149][ T9350] __x64_sys_write+0x97/0xf0 [ 70.200570][ T9350] x64_sys_call+0x3015/0x3cf0 [ 70.201065][ T9350] do_syscall_64+0xd9/0x1d0 [ 70.201506][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 70.202054][ T9350] [ 70.202279][ T9350] Uninit was created at: [ 70.202693][ T9350] __kmalloc_noprof+0x621/0xf80 [ 70.203149][ T9350] hfsplus_find_init+0x8d/0x1d0 [ 70.203602][ T9350] hfsplus_file_extend+0x6ca/0x1cf0 [ 70.204087][ T9350] hfsplus_get_block+0xe16/0x17b0 [ 70.204561][ T9350] __block_write_begin_int+0x962/0x2ce0 [ 70.205074][ T9350] cont_write_begin+0x1000/0x1950 [ 70.205547][ T9350] hfsplus_write_begin+0x85/0x130 [ 70.206017][ T9350] generic_perform_write+0x3e8/0x1060 [ 70.206519][ T9350] __generic_file_write_iter+0x215/0x460 [ 70.207042][ T9350] generic_file_write_iter+0x109/0x5e0 [ 70.207552][ T9350] vfs_write+0xb0f/0x14e0 [ 70.207961][ T9350] ksys_write+0x23e/0x490 [ 70.208375][ T9350] __x64_sys_write+0x97/0xf0 [ 70.208810][ T9350] x64_sys_call+0x3015/0x3cf0 [ 70.209255][ T9350] do_syscall_64+0xd9/0x1d0 [ 70.209680][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 70.210230][ T9350] [ 70.210454][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Not tainted 6.12.0-rc5 #5 [ 70.211174][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 70.212115][ T9350] ===================================================== [ 70.212734][ T9350] Disabling lock debugging due to kernel taint [ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic set ... [ 70.213858][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Tainted: G B 6.12.0-rc5 #5 [ 70.214679][ T9350] Tainted: [B]=BAD_PAGE [ 70.215057][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 70.215999][ T9350] Call Trace: [ 70.216309][ T9350] <TASK> [ 70.216585][ T9350] dump_stack_lvl+0x1fd/0x2b0 [ 70.217025][ T9350] dump_stack+0x1e/0x30 [ 70.217421][ T9350] panic+0x502/0xca0 [ 70.217803][ T9350] ? kmsan_get_metadata+0x13e/0x1c0 [ 70.218294][ Message fromT sy9350] kmsan_report+0x296/slogd@syzkaller 0x2aat Aug 18 22:11:058 ... kernel :[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic [ 70.220179][ T9350] ? kmsan_get_metadata+0x13e/0x1c0 set ... [ 70.221254][ T9350] ? __msan_warning+0x96/0x120 [ 70.222066][ T9350] ? __hfsplus_ext_cache_extent+0x7d0/0x990 [ 70.223023][ T9350] ? hfsplus_file_extend+0x74f/0x1cf0 [ 70.224120][ T9350] ? hfsplus_get_block+0xe16/0x17b0 [ 70.224946][ T9350] ? __block_write_begin_int+0x962/0x2ce0 [ 70.225756][ T9350] ? cont_write_begin+0x1000/0x1950 [ 70.226337][ T9350] ? hfsplus_write_begin+0x85/0x130 [ 70.226852][ T9350] ? generic_perform_write+0x3e8/0x1060 [ 70.227405][ T9350] ? __generic_file_write_iter+0x215/0x460 [ 70.227979][ T9350] ? generic_file_write_iter+0x109/0x5e0 [ 70.228540][ T9350] ? vfs_write+0xb0f/0x14e0 [ 70.228997][ T9350] ? ksys_write+0x23e/0x490 ---truncated---
CVE-2025-40232 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rv: Fully convert enabled_monitors to use list_head as iterator The callbacks in enabled_monitors_seq_ops are inconsistent. Some treat the iterator as struct rv_monitor *, while others treat the iterator as struct list_head *. This causes a wrong type cast and crashes the system as reported by Nathan. Convert everything to use struct list_head * as iterator. This also makes enabled_monitors consistent with available_monitors.
CVE-2025-40231 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vsock: fix lock inversion in vsock_assign_transport() Syzbot reported a potential lock inversion deadlock between vsock_register_mutex and sk_lock-AF_VSOCK when vsock_linger() is called. The issue was introduced by commit 687aa0c5581b ("vsock: Fix transport_* TOCTOU") which added vsock_register_mutex locking in vsock_assign_transport() around the transport->release() call, that can call vsock_linger(). vsock_assign_transport() can be called with sk_lock held. vsock_linger() calls sk_wait_event() that temporarily releases and re-acquires sk_lock. During this window, if another thread hold vsock_register_mutex while trying to acquire sk_lock, a circular dependency is created. Fix this by releasing vsock_register_mutex before calling transport->release() and vsock_deassign_transport(). This is safe because we don't need to hold vsock_register_mutex while releasing the old transport, and we ensure the new transport won't disappear by obtaining a module reference first via try_module_get().
CVE-2025-40222 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: serial: sh-sci: fix RSCI FIFO overrun handling The receive error handling code is shared between RSCI and all other SCIF port types, but the RSCI overrun_reg is specified as a memory offset, while for other SCIF types it is an enum value used to index into the sci_port_params->regs array, as mentioned above the sci_serial_in() function. For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call inside the sci_handle_fifo_overrun() function to index outside the bounds of the regs array, which currently has a size of 20, as specified by SCI_NR_REGS. Because of this, we end up accessing memory outside of RSCI's rsci_port_params structure, which, when interpreted as a plat_sci_reg, happens to have a non-zero size, causing the following WARN when sci_serial_in() is called, as the accidental size does not match the supported register sizes. The existence of the overrun_reg needs to be checked because SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not present in the regs array. Avoid calling sci_getreg() for port types which don't use standard register handling. Use the ops->read_reg() and ops->write_reg() functions to properly read and write registers for RSCI, and change the type of the status variable to accommodate the 32-bit CSR register. sci_getreg() and sci_serial_in() are also called with overrun_reg in the sci_mpxed_interrupt() interrupt handler, but that code path is not used for RSCI, as it does not have a muxed interrupt. ------------[ cut here ]------------ Invalid register access WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : sci_serial_in+0x38/0xac lr : sci_serial_in+0x38/0xac sp : ffff800080003e80 x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80 x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000 x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720 x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720 x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48 x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48 x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80 Call trace: sci_serial_in+0x38/0xac (P) sci_handle_fifo_overrun.isra.0+0x70/0x134 sci_er_interrupt+0x50/0x39c __handle_irq_event_percpu+0x48/0x140 handle_irq_event+0x44/0xb0 handle_fasteoi_irq+0xf4/0x1a0 handle_irq_desc+0x34/0x58 generic_handle_domain_irq+0x1c/0x28 gic_handle_irq+0x4c/0x140 call_on_irq_stack+0x30/0x48 do_interrupt_handler+0x80/0x84 el1_interrupt+0x34/0x68 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 default_idle_call+0x28/0x58 (P) do_idle+0x1f8/0x250 cpu_startup_entry+0x34/0x3c rest_init+0xd8/0xe0 console_on_rootfs+0x0/0x6c __primary_switched+0x88/0x90 ---[ end trace 0000000000000000 ]---
CVE-2025-40236 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio-net: zero unused hash fields When GSO tunnel is negotiated virtio_net_hdr_tnl_from_skb() tries to initialize the tunnel metadata but forget to zero unused rxhash fields. This may leak information to another side. Fixing this by zeroing the unused hash fields.
CVE-2025-40238 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix IPsec cleanup over MPV device When we do mlx5e_detach_netdev() we eventually disable blocking events notifier, among those events are IPsec MPV events from IB to core. So before disabling those blocking events, make sure to also unregister the devcom device and mark all this device operations as complete, in order to prevent the other device from using invalid netdev during future devcom events which could cause the trace below. BUG: kernel NULL pointer dereference, address: 0000000000000010 PGD 146427067 P4D 146427067 PUD 146488067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1 Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40 RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206 RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00 RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000 R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600 R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80 FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x130 ? asm_exc_page_fault+0x22/0x30 ? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core] mlx5_devcom_send_event+0x8c/0x170 [mlx5_core] blocking_event+0x17b/0x230 [mlx5_core] notifier_call_chain+0x35/0xa0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core] mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib] mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib] ? idr_alloc_cyclic+0x50/0xb0 ? __kmalloc_cache_noprof+0x167/0x340 ? __kmalloc_noprof+0x1a7/0x430 __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe9/0x310 [mlx5_ib] ? kernfs_add_one+0x107/0x150 ? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib] auxiliary_bus_probe+0x3e/0x90 really_probe+0xc5/0x3a0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x62d/0x830 __auxiliary_device_add+0x3b/0xa0 ? auxiliary_device_init+0x41/0x90 add_adev+0xd1/0x150 [mlx5_core] mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core] esw_mode_change+0x6c/0xc0 [mlx5_core] mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core] devlink_nl_eswitch_set_doit+0x60/0xe0 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x180/0x2b0 ? devlink_get_from_attrs_lock+0x170/0x170 ? devlink_nl_eswitch_get_doit+0x290/0x290 ? devlink_nl_pre_doit_port_optional+0x50/0x50 ? genl_family_rcv_msg_dumpit+0xf0/0xf0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1fc/0x2d0 netlink_sendmsg+0x1e4/0x410 __sock_sendmsg+0x38/0x60 ? sockfd_lookup_light+0x12/0x60 __sys_sendto+0x105/0x160 ? __sys_recvmsg+0x4e/0x90 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x4c/0x100 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f27bc91b13a Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff ---truncated---
CVE-2025-40226 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Account for failed debug initialization When the SCMI debug subsystem fails to initialize, the related debug root will be missing, and the underlying descriptor will be NULL. Handle this fault condition in the SCMI debug helpers that maintain metrics counters.
CVE-2025-40260 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix scx_enable() crash on helper kthread creation failure A crash was observed when the sched_ext selftests runner was terminated with Ctrl+\ while test 15 was running: NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0 LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0 Call Trace: scx_enable.constprop.0+0x32c/0x12b0 (unreliable) bpf_struct_ops_link_create+0x18c/0x22c __sys_bpf+0x23f8/0x3044 sys_bpf+0x2c/0x6c system_call_exception+0x124/0x320 system_call_vectored_common+0x15c/0x2ec kthread_run_worker() returns an ERR_PTR() on failure rather than NULL, but the current code in scx_alloc_and_add_sched() only checks for a NULL helper. Incase of failure on SIGQUIT, the error is not handled in scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an error pointer. Error handling is fixed in scx_alloc_and_add_sched() to propagate PTR_ERR() into ret, so that scx_enable() jumps to the existing error path, avoiding random dereference on failure.
CVE-2025-40225 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix kernel panic on partial unmap of a GPU VA region This commit address a kernel panic issue that can happen if Userspace tries to partially unmap a GPU virtual region (aka drm_gpuva). The VM_BIND interface allows partial unmapping of a BO. Panthor driver pre-allocates memory for the new drm_gpuva structures that would be needed for the map/unmap operation, done using drm_gpuvm layer. It expected that only one new drm_gpuva would be needed on umap but a partial unmap can require 2 new drm_gpuva and that's why it ended up doing a NULL pointer dereference causing a kernel panic. Following dump was seen when partial unmap was exercised. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078 Mem abort info: ESR = 0x0000000096000046 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x06: level 2 translation fault Data abort info: ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000 [000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000 Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP <snip> pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor] lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor] sp : ffff800085d43970 x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000 x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000 x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010 x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58 x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7 x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001 x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078 Call trace: panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor] op_remap_cb.isra.22+0x50/0x80 __drm_gpuvm_sm_unmap+0x10c/0x1c8 drm_gpuvm_sm_unmap+0x40/0x60 panthor_vm_exec_op+0xb4/0x3d0 [panthor] panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor] panthor_ioctl_vm_bind+0x160/0x4a0 [panthor] drm_ioctl_kernel+0xbc/0x138 drm_ioctl+0x240/0x500 __arm64_sys_ioctl+0xb0/0xf8 invoke_syscall+0x4c/0x110 el0_svc_common.constprop.1+0x98/0xf8 do_el0_svc+0x24/0x38 el0_svc+0x40/0xf8 el0t_64_sync_handler+0xa0/0xc8 el0t_64_sync+0x174/0x178
CVE-2025-40249 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gpio: cdev: make sure the cdev fd is still active before emitting events With the final call to fput() on a file descriptor, the release action may be deferred and scheduled on a work queue. The reference count of that descriptor is still zero and it must not be used. It's possible that a GPIO change, we want to notify the user-space about, happens AFTER the reference count on the file descriptor associated with the character device went down to zero but BEFORE the .release() callback was called from the workqueue and so BEFORE we unregistered from the notifier. Using the regular get_file() routine in this situation triggers the following warning: struct file::f_count incremented from zero; use-after-free condition present! So use the get_file_active() variant that will return NULL on file descriptors that have been or are being released.