Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 15858 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40304 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds Add bounds checking to prevent writes past framebuffer boundaries when rendering text near screen edges. Return early if the Y position is off-screen and clip image height to screen boundary. Break from the rendering loop if the X position is off-screen. When clipping image width to fit the screen, update the character count to match the clipped width to prevent buffer size mismatches. Without the character count update, bit_putcs_aligned and bit_putcs_unaligned receive mismatched parameters where the buffer is allocated for the clipped width but cnt reflects the original larger count, causing out-of-bounds writes.
CVE-2025-40271 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs/proc: fix uaf in proc_readdir_de() Pde is erased from subdir rbtree through rb_erase(), but not set the node to EMPTY, which may result in uaf access. We should use RB_CLEAR_NODE() set the erased node to EMPTY, then pde_subdir_next() will return NULL to avoid uaf access. We found an uaf issue while using stress-ng testing, need to run testcase getdent and tun in the same time. The steps of the issue is as follows: 1) use getdent to traverse dir /proc/pid/net/dev_snmp6/, and current pde is tun3; 2) in the [time windows] unregister netdevice tun3 and tun2, and erase them from rbtree. erase tun3 first, and then erase tun2. the pde(tun2) will be released to slab; 3) continue to getdent process, then pde_subdir_next() will return pde(tun2) which is released, it will case uaf access. CPU 0 | CPU 1 ------------------------------------------------------------------------- traverse dir /proc/pid/net/dev_snmp6/ | unregister_netdevice(tun->dev) //tun3 tun2 sys_getdents64() | iterate_dir() | proc_readdir() | proc_readdir_de() | snmp6_unregister_dev() pde_get(de); | proc_remove() read_unlock(&proc_subdir_lock); | remove_proc_subtree() | write_lock(&proc_subdir_lock); [time window] | rb_erase(&root->subdir_node, &parent->subdir); | write_unlock(&proc_subdir_lock); read_lock(&proc_subdir_lock); | next = pde_subdir_next(de); | pde_put(de); | de = next; //UAF | rbtree of dev_snmp6 | pde(tun3) / \ NULL pde(tun2)
CVE-2025-40291 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix regbuf vector size truncation There is a report of io_estimate_bvec_size() truncating the calculated number of segments that leads to corruption issues. Check it doesn't overflow "int"s used later. Rough but simple, can be improved on top.
CVE-2025-40277 1 Linux 1 Linux Kernel 2025-12-08 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Validate command header size against SVGA_CMD_MAX_DATASIZE This data originates from userspace and is used in buffer offset calculations which could potentially overflow causing an out-of-bounds access.
CVE-2025-40276 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Flush shmem writes before mapping buffers CPU-uncached The shmem layer zeroes out the new pages using cached mappings, and if we don't CPU-flush we might leave dirty cachelines behind, leading to potential data leaks and/or asynchronous buffer corruption when dirty cachelines are evicted.
CVE-2025-40297 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix use-after-free due to MST port state bypass syzbot reported[1] a use-after-free when deleting an expired fdb. It is due to a race condition between learning still happening and a port being deleted, after all its fdbs have been flushed. The port's state has been toggled to disabled so no learning should happen at that time, but if we have MST enabled, it will bypass the port's state, that together with VLAN filtering disabled can lead to fdb learning at a time when it shouldn't happen while the port is being deleted. VLAN filtering must be disabled because we flush the port VLANs when it's being deleted which will stop learning. This fix adds a check for the port's vlan group which is initialized to NULL when the port is getting deleted, that avoids the port state bypass. When MST is enabled there would be a minimal new overhead in the fast-path because the port's vlan group pointer is cache-hot. [1] https://syzkaller.appspot.com/bug?extid=dd280197f0f7ab3917be
CVE-2025-40278 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak Fix a KMSAN kernel-infoleak detected by the syzbot . [net?] KMSAN: kernel-infoleak in __skb_datagram_iter In tcf_ife_dump(), the variable 'opt' was partially initialized using a designatied initializer. While the padding bytes are reamined uninitialized. nla_put() copies the entire structure into a netlink message, these uninitialized bytes leaked to userspace. Initialize the structure with memset before assigning its fields to ensure all members and padding are cleared prior to beign copied. This change silences the KMSAN report and prevents potential information leaks from the kernel memory. This fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures no infoleak.
CVE-2025-40293 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommufd: Don't overflow during division for dirty tracking If pgshift is 63 then BITS_PER_TYPE(*bitmap->bitmap) * pgsize will overflow to 0 and this triggers divide by 0. In this case the index should just be 0, so reorganize things to divide by shift and avoid hitting any overflows.
CVE-2025-40296 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: int3472: Fix double free of GPIO device during unregister regulator_unregister() already frees the associated GPIO device. On ThinkPad X9 (Lunar Lake), this causes a double free issue that leads to random failures when other drivers (typically Intel THC) attempt to allocate interrupts. The root cause is that the reference count of the pinctrl_intel_platform module unexpectedly drops to zero when this driver defers its probe. This behavior can also be reproduced by unloading the module directly. Fix the issue by removing the redundant release of the GPIO device during regulator unregistration.
CVE-2025-40294 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix OOB access in parse_adv_monitor_pattern() In the parse_adv_monitor_pattern() function, the value of the 'length' variable is currently limited to HCI_MAX_EXT_AD_LENGTH(251). The size of the 'value' array in the mgmt_adv_pattern structure is 31. If the value of 'pattern[i].length' is set in the user space and exceeds 31, the 'patterns[i].value' array can be accessed out of bound when copied. Increasing the size of the 'value' array in the 'mgmt_adv_pattern' structure will break the userspace. Considering this, and to avoid OOB access revert the limits for 'offset' and 'length' back to the value of HCI_MAX_AD_LENGTH. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-40301 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_event: validate skb length for unknown CC opcode In hci_cmd_complete_evt(), if the command complete event has an unknown opcode, we assume the first byte of the remaining skb->data contains the return status. However, parameter data has previously been pulled in hci_event_func(), which may leave the skb empty. If so, using skb->data[0] for the return status uses un-init memory. The fix is to check skb->len before using skb->data.
CVE-2025-40282 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: 6lowpan: reset link-local header on ipv6 recv path Bluetooth 6lowpan.c netdev has header_ops, so it must set link-local header for RX skb, otherwise things crash, eg. with AF_PACKET SOCK_RAW Add missing skb_reset_mac_header() for uncompressed ipv6 RX path. For the compressed one, it is done in lowpan_header_decompress(). Log: (BlueZ 6lowpan-tester Client Recv Raw - Success) ------ kernel BUG at net/core/skbuff.c:212! Call Trace: <IRQ> ... packet_rcv (net/packet/af_packet.c:2152) ... <TASK> __local_bh_enable_ip (kernel/softirq.c:407) netif_rx (net/core/dev.c:5648) chan_recv_cb (net/bluetooth/6lowpan.c:294 net/bluetooth/6lowpan.c:359) ------
CVE-2025-40274 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: guest_memfd: Remove bindings on memslot deletion when gmem is dying When unbinding a memslot from a guest_memfd instance, remove the bindings even if the guest_memfd file is dying, i.e. even if its file refcount has gone to zero. If the memslot is freed before the file is fully released, nullifying the memslot side of the binding in kvm_gmem_release() will write to freed memory, as detected by syzbot+KASAN: ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353 Write of size 8 at addr ffff88807befa508 by task syz.0.17/6022 CPU: 0 UID: 0 PID: 6022 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025 Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 kvm_gmem_release+0x176/0x440 virt/kvm/guest_memfd.c:353 __fput+0x44c/0xa70 fs/file_table.c:468 task_work_run+0x1d4/0x260 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xe9/0x130 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x2bd/0xfa0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fbeeff8efc9 </TASK> Allocated by task 6023: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:414 kasan_kmalloc include/linux/kasan.h:262 [inline] __kmalloc_cache_noprof+0x3e2/0x700 mm/slub.c:5758 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] kvm_set_memory_region+0x747/0xb90 virt/kvm/kvm_main.c:2104 kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154 kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6023: kasan_save_stack mm/kasan/common.c:56 [inline] kasan_save_track+0x3e/0x80 mm/kasan/common.c:77 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5c/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2533 [inline] slab_free mm/slub.c:6622 [inline] kfree+0x19a/0x6d0 mm/slub.c:6829 kvm_set_memory_region+0x9c4/0xb90 virt/kvm/kvm_main.c:2130 kvm_vm_ioctl_set_memory_region+0x6f/0xd0 virt/kvm/kvm_main.c:2154 kvm_vm_ioctl+0x957/0xc60 virt/kvm/kvm_main.c:5201 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Deliberately don't acquire filemap invalid lock when the file is dying as the lifecycle of f_mapping is outside the purview of KVM. Dereferencing the mapping is *probably* fine, but there's no need to invalidate anything as memslot deletion is responsible for zapping SPTEs, and the only code that can access the dying file is kvm_gmem_release(), whose core code is mutual ---truncated---
CVE-2025-40303 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: ensure no dirty metadata is written back for an fs with errors [BUG] During development of a minor feature (make sure all btrfs_bio::end_io() is called in task context), I noticed a crash in generic/388, where metadata writes triggered new works after btrfs_stop_all_workers(). It turns out that it can even happen without any code modification, just using RAID5 for metadata and the same workload from generic/388 is going to trigger the use-after-free. [CAUSE] If btrfs hits an error, the fs is marked as error, no new transaction is allowed thus metadata is in a frozen state. But there are some metadata modifications before that error, and they are still in the btree inode page cache. Since there will be no real transaction commit, all those dirty folios are just kept as is in the page cache, and they can not be invalidated by invalidate_inode_pages2() call inside close_ctree(), because they are dirty. And finally after btrfs_stop_all_workers(), we call iput() on btree inode, which triggers writeback of those dirty metadata. And if the fs is using RAID56 metadata, this will trigger RMW and queue new works into rmw_workers, which is already stopped, causing warning from queue_work() and use-after-free. [FIX] Add a special handling for write_one_eb(), that if the fs is already in an error state, immediately mark the bbio as failure, instead of really submitting them. Then during close_ctree(), iput() will just discard all those dirty tree blocks without really writing them back, thus no more new jobs for already stopped-and-freed workqueues. The extra discard in write_one_eb() also acts as an extra safenet. E.g. the transaction abort is triggered by some extent/free space tree corruptions, and since extent/free space tree is already corrupted some tree blocks may be allocated where they shouldn't be (overwriting existing tree blocks). In that case writing them back will further corrupting the fs.
CVE-2025-40270 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm, swap: fix potential UAF issue for VMA readahead Since commit 78524b05f1a3 ("mm, swap: avoid redundant swap device pinning"), the common helper for allocating and preparing a folio in the swap cache layer no longer tries to get a swap device reference internally, because all callers of __read_swap_cache_async are already holding a swap entry reference. The repeated swap device pinning isn't needed on the same swap device. Caller of VMA readahead is also holding a reference to the target entry's swap device, but VMA readahead walks the page table, so it might encounter swap entries from other devices, and call __read_swap_cache_async on another device without holding a reference to it. So it is possible to cause a UAF when swapoff of device A raced with swapin on device B, and VMA readahead tries to read swap entries from device A. It's not easy to trigger, but in theory, it could cause real issues. Make VMA readahead try to get the device reference first if the swap device is a different one from the target entry.
CVE-2025-40292 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: virtio-net: fix received length check in big packets Since commit 4959aebba8c0 ("virtio-net: use mtu size as buffer length for big packets"), when guest gso is off, the allocated size for big packets is not MAX_SKB_FRAGS * PAGE_SIZE anymore but depends on negotiated MTU. The number of allocated frags for big packets is stored in vi->big_packets_num_skbfrags. Because the host announced buffer length can be malicious (e.g. the host vhost_net driver's get_rx_bufs is modified to announce incorrect length), we need a check in virtio_net receive path. Currently, the check is not adapted to the new change which can lead to NULL page pointer dereference in the below while loop when receiving length that is larger than the allocated one. This commit fixes the received length check corresponding to the new change.
CVE-2022-50619 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr() If the number of pages from the userptr BO differs from the SG BO then the allocated memory for the SG table doesn't get freed before returning -EINVAL, which may lead to a memory leak in some error paths. Fix this by checking the number of pages before allocating memory for the SG table.
CVE-2025-40324 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix crash in nfsd4_read_release() When tracing is enabled, the trace_nfsd_read_done trace point crashes during the pynfs read.testNoFh test.
CVE-2023-53766 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: FS: JFS: Check for read-only mounted filesystem in txBegin This patch adds a check for read-only mounted filesystem in txBegin before starting a transaction potentially saving from NULL pointer deref.
CVE-2025-40315 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Fix epfile null pointer access after ep enable. A race condition occurs when ffs_func_eps_enable() runs concurrently with ffs_data_reset(). The ffs_data_clear() called in ffs_data_reset() sets ffs->epfiles to NULL before resetting ffs->eps_count to 0, leading to a NULL pointer dereference when accessing epfile->ep in ffs_func_eps_enable() after successful usb_ep_enable(). The ffs->epfiles pointer is set to NULL in both ffs_data_clear() and ffs_data_close() functions, and its modification is protected by the spinlock ffs->eps_lock. And the whole ffs_func_eps_enable() function is also protected by ffs->eps_lock. Thus, add NULL pointer handling for ffs->epfiles in the ffs_func_eps_enable() function to fix issues