Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 15849 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-40282 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: 6lowpan: reset link-local header on ipv6 recv path Bluetooth 6lowpan.c netdev has header_ops, so it must set link-local header for RX skb, otherwise things crash, eg. with AF_PACKET SOCK_RAW Add missing skb_reset_mac_header() for uncompressed ipv6 RX path. For the compressed one, it is done in lowpan_header_decompress(). Log: (BlueZ 6lowpan-tester Client Recv Raw - Success) ------ kernel BUG at net/core/skbuff.c:212! Call Trace: <IRQ> ... packet_rcv (net/packet/af_packet.c:2152) ... <TASK> __local_bh_enable_ip (kernel/softirq.c:407) netif_rx (net/core/dev.c:5648) chan_recv_cb (net/bluetooth/6lowpan.c:294 net/bluetooth/6lowpan.c:359) ------
CVE-2025-40278 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: sched: act_ife: initialize struct tc_ife to fix KMSAN kernel-infoleak Fix a KMSAN kernel-infoleak detected by the syzbot . [net?] KMSAN: kernel-infoleak in __skb_datagram_iter In tcf_ife_dump(), the variable 'opt' was partially initialized using a designatied initializer. While the padding bytes are reamined uninitialized. nla_put() copies the entire structure into a netlink message, these uninitialized bytes leaked to userspace. Initialize the structure with memset before assigning its fields to ensure all members and padding are cleared prior to beign copied. This change silences the KMSAN report and prevents potential information leaks from the kernel memory. This fix has been tested and validated by syzbot. This patch closes the bug reported at the following syzkaller link and ensures no infoleak.
CVE-2022-50624 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: netsec: fix error handling in netsec_register_mdio() If phy_device_register() fails, phy_device_free() need be called to put refcount, so memory of phy device and device name can be freed in callback function. If get_phy_device() fails, mdiobus_unregister() need be called, or it will cause warning in mdiobus_free() and kobject is leaked.
CVE-2023-53751 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: cifs: fix potential use-after-free bugs in TCP_Server_Info::hostname TCP_Server_Info::hostname may be updated once or many times during reconnect, so protect its access outside reconnect path as well and then prevent any potential use-after-free bugs.
CVE-2023-53750 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pinctrl: freescale: Fix a memory out of bounds when num_configs is 1 The config passed in by pad wakeup is 1, when num_configs is 1, Configuration [1] should not be fetched, which will be detected by KASAN as a memory out of bounds condition. Modify to get configs[1] when num_configs is 2.
CVE-2023-53746 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/vfio-ap: fix memory leak in vfio_ap device driver The device release callback function invoked to release the matrix device uses the dev_get_drvdata(device *dev) function to retrieve the pointer to the vfio_matrix_dev object in order to free its storage. The problem is, this object is not stored as drvdata with the device; since the kfree function will accept a NULL pointer, the memory for the vfio_matrix_dev object is never freed. Since the device being released is contained within the vfio_matrix_dev object, the container_of macro will be used to retrieve its pointer.
CVE-2025-40318 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once hci_cmd_sync_dequeue_once() does lookup and then cancel the entry under two separate lock sections. Meanwhile, hci_cmd_sync_work() can also delete the same entry, leading to double list_del() and "UAF". Fix this by holding cmd_sync_work_lock across both lookup and cancel, so that the entry cannot be removed concurrently.
CVE-2025-40316 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix device use-after-free on unbind A recent change fixed device reference leaks when looking up drm platform device driver data during bind() but failed to remove a partial fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix kobject put for component sub-drivers"). This results in a reference imbalance on component bind() failures and on unbind() which could lead to a user-after-free. Make sure to only drop the references after retrieving the driver data by effectively reverting the previous partial fix. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2022-50621 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dm: verity-loadpin: Only trust verity targets with enforcement Verity targets can be configured to ignore corrupted data blocks. LoadPin must only trust verity targets that are configured to perform some kind of enforcement when data corruption is detected, like returning an error, restarting the system or triggering a panic.
CVE-2025-40305 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: 9p/trans_fd: p9_fd_request: kick rx thread if EPOLLIN p9_read_work() doesn't set Rworksched and doesn't do schedule_work(m->rq) if list_empty(&m->req_list). However, if the pipe is full, we need to read more data and this used to work prior to commit aaec5a95d59615 ("pipe_read: don't wake up the writer if the pipe is still full"). p9_read_work() does p9_fd_read() -> ... -> anon_pipe_read() which (before the commit above) triggered the unnecessary wakeup. This wakeup calls p9_pollwake() which kicks p9_poll_workfn() -> p9_poll_mux(), p9_poll_mux() will notice EPOLLIN and schedule_work(&m->rq). This no longer happens after the optimization above, change p9_fd_request() to use p9_poll_mux() instead of only checking for EPOLLOUT.
CVE-2023-53752 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: deal with integer overflows in kmalloc_reserve() Blamed commit changed: ptr = kmalloc(size); if (ptr) size = ksize(ptr); size = kmalloc_size_roundup(size); ptr = kmalloc(size); This allowed various crash as reported by syzbot [1] and Kyle Zeng. Problem is that if @size is bigger than 0x80000001, kmalloc_size_roundup(size) returns 2^32. kmalloc_reserve() uses a 32bit variable (obj_size), so 2^32 is truncated to 0. kmalloc(0) returns ZERO_SIZE_PTR which is not handled by skb allocations. Following trace can be triggered if a netdev->mtu is set close to 0x7fffffff We might in the future limit netdev->mtu to more sensible limit (like KMALLOC_MAX_SIZE). This patch is based on a syzbot report, and also a report and tentative fix from Kyle Zeng. [1] BUG: KASAN: user-memory-access in __build_skb_around net/core/skbuff.c:294 [inline] BUG: KASAN: user-memory-access in __alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527 Write of size 32 at addr 00000000fffffd10 by task syz-executor.4/22554 CPU: 1 PID: 22554 Comm: syz-executor.4 Not tainted 6.1.39-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023 Call trace: dump_backtrace+0x1c8/0x1f4 arch/arm64/kernel/stacktrace.c:279 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:286 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x120/0x1a0 lib/dump_stack.c:106 print_report+0xe4/0x4b4 mm/kasan/report.c:398 kasan_report+0x150/0x1ac mm/kasan/report.c:495 kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189 memset+0x40/0x70 mm/kasan/shadow.c:44 __build_skb_around net/core/skbuff.c:294 [inline] __alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527 alloc_skb include/linux/skbuff.h:1316 [inline] igmpv3_newpack+0x104/0x1088 net/ipv4/igmp.c:359 add_grec+0x81c/0x1124 net/ipv4/igmp.c:534 igmpv3_send_cr net/ipv4/igmp.c:667 [inline] igmp_ifc_timer_expire+0x1b0/0x1008 net/ipv4/igmp.c:810 call_timer_fn+0x1c0/0x9f0 kernel/time/timer.c:1474 expire_timers kernel/time/timer.c:1519 [inline] __run_timers+0x54c/0x710 kernel/time/timer.c:1790 run_timer_softirq+0x28/0x4c kernel/time/timer.c:1803 _stext+0x380/0xfbc ____do_softirq+0x14/0x20 arch/arm64/kernel/irq.c:79 call_on_irq_stack+0x24/0x4c arch/arm64/kernel/entry.S:891 do_softirq_own_stack+0x20/0x2c arch/arm64/kernel/irq.c:84 invoke_softirq kernel/softirq.c:437 [inline] __irq_exit_rcu+0x1c0/0x4cc kernel/softirq.c:683 irq_exit_rcu+0x14/0x78 kernel/softirq.c:695 el0_interrupt+0x7c/0x2e0 arch/arm64/kernel/entry-common.c:717 __el0_irq_handler_common+0x18/0x24 arch/arm64/kernel/entry-common.c:724 el0t_64_irq_handler+0x10/0x1c arch/arm64/kernel/entry-common.c:729 el0t_64_irq+0x1a0/0x1a4 arch/arm64/kernel/entry.S:584
CVE-2023-53748 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix potential array out-of-bounds in decoder queue_setup variable *nplanes is provided by user via system call argument. The possible value of q_data->fmt->num_planes is 1-3, while the value of *nplanes can be 1-8. The array access by index i can cause array out-of-bounds. Fix this bug by checking *nplanes against the array size.
CVE-2022-50617 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/powerplay/psm: Fix memory leak in power state init Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power state init") made the power state init function return early in case of failure to get an entry from the powerplay table, but it missed to clean up the allocated memory for the current power state before returning.
CVE-2025-40312 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: jfs: Verify inode mode when loading from disk The inode mode loaded from corrupted disk can be invalid. Do like what commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk") does.
CVE-2025-40309 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix UAF on sco_conn_free BUG: KASAN: slab-use-after-free in sco_conn_free net/bluetooth/sco.c:87 [inline] BUG: KASAN: slab-use-after-free in kref_put include/linux/kref.h:65 [inline] BUG: KASAN: slab-use-after-free in sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107 Write of size 8 at addr ffff88811cb96b50 by task kworker/u17:4/352 CPU: 1 UID: 0 PID: 352 Comm: kworker/u17:4 Not tainted 6.17.0-rc5-g717368f83676 #4 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci13 hci_cmd_sync_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x10b/0x170 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x191/0x550 mm/kasan/report.c:482 kasan_report+0xc4/0x100 mm/kasan/report.c:595 sco_conn_free net/bluetooth/sco.c:87 [inline] kref_put include/linux/kref.h:65 [inline] sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107 sco_connect_cfm+0xb4/0xae0 net/bluetooth/sco.c:1441 hci_connect_cfm include/net/bluetooth/hci_core.h:2082 [inline] hci_conn_failed+0x20a/0x2e0 net/bluetooth/hci_conn.c:1313 hci_conn_unlink+0x55f/0x810 net/bluetooth/hci_conn.c:1121 hci_conn_del+0xb6/0x1110 net/bluetooth/hci_conn.c:1147 hci_abort_conn_sync+0x8c5/0xbb0 net/bluetooth/hci_sync.c:5689 hci_cmd_sync_work+0x281/0x380 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3236 [inline] process_scheduled_works+0x77e/0x1040 kernel/workqueue.c:3319 worker_thread+0xbee/0x1200 kernel/workqueue.c:3400 kthread+0x3c7/0x870 kernel/kthread.c:463 ret_from_fork+0x13a/0x1e0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> Allocated by task 31370: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x70 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:388 [inline] __kasan_kmalloc+0x82/0x90 mm/kasan/common.c:405 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4382 [inline] __kmalloc_noprof+0x22f/0x390 mm/slub.c:4394 kmalloc_noprof include/linux/slab.h:909 [inline] sk_prot_alloc+0xae/0x220 net/core/sock.c:2239 sk_alloc+0x34/0x5a0 net/core/sock.c:2295 bt_sock_alloc+0x3c/0x330 net/bluetooth/af_bluetooth.c:151 sco_sock_alloc net/bluetooth/sco.c:562 [inline] sco_sock_create+0xc0/0x350 net/bluetooth/sco.c:593 bt_sock_create+0x161/0x3b0 net/bluetooth/af_bluetooth.c:135 __sock_create+0x3ad/0x780 net/socket.c:1589 sock_create net/socket.c:1647 [inline] __sys_socket_create net/socket.c:1684 [inline] __sys_socket+0xd5/0x330 net/socket.c:1731 __do_sys_socket net/socket.c:1745 [inline] __se_sys_socket net/socket.c:1743 [inline] __x64_sys_socket+0x7a/0x90 net/socket.c:1743 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xc7/0x240 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 31374: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x30/0x70 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:576 poison_slab_object mm/kasan/common.c:243 [inline] __kasan_slab_free+0x3d/0x50 mm/kasan/common.c:275 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2428 [inline] slab_free mm/slub.c:4701 [inline] kfree+0x199/0x3b0 mm/slub.c:4900 sk_prot_free net/core/sock.c:2278 [inline] __sk_destruct+0x4aa/0x630 net/core/sock.c:2373 sco_sock_release+0x2ad/0x300 net/bluetooth/sco.c:1333 __sock_release net/socket.c:649 [inline] sock_close+0xb8/0x230 net/socket.c:1439 __fput+0x3d1/0x9e0 fs/file_table.c:468 task_work_run+0x206/0x2a0 kernel/task_work.c:227 get_signal+0x1201/0x1410 kernel/signal.c:2807 arch_do_signal_or_restart+0x34/0x740 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop+0x68/0xc0 kernel/entry/common.c:40 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] s ---truncated---
CVE-2025-40323 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fbcon: Set fb_display[i]->mode to NULL when the mode is released Recently, we discovered the following issue through syzkaller: BUG: KASAN: slab-use-after-free in fb_mode_is_equal+0x285/0x2f0 Read of size 4 at addr ff11000001b3c69c by task syz.xxx ... Call Trace: <TASK> dump_stack_lvl+0xab/0xe0 print_address_description.constprop.0+0x2c/0x390 print_report+0xb9/0x280 kasan_report+0xb8/0xf0 fb_mode_is_equal+0x285/0x2f0 fbcon_mode_deleted+0x129/0x180 fb_set_var+0xe7f/0x11d0 do_fb_ioctl+0x6a0/0x750 fb_ioctl+0xe0/0x140 __x64_sys_ioctl+0x193/0x210 do_syscall_64+0x5f/0x9c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Based on experimentation and analysis, during framebuffer unregistration, only the memory of fb_info->modelist is freed, without setting the corresponding fb_display[i]->mode to NULL for the freed modes. This leads to UAF issues during subsequent accesses. Here's an example of reproduction steps: 1. With /dev/fb0 already registered in the system, load a kernel module to register a new device /dev/fb1; 2. Set fb1's mode to the global fb_display[] array (via FBIOPUT_CON2FBMAP); 3. Switch console from fb to VGA (to allow normal rmmod of the ko); 4. Unload the kernel module, at this point fb1's modelist is freed, leaving a wild pointer in fb_display[]; 5. Trigger the bug via system calls through fb0 attempting to delete a mode from fb0. Add a check in do_unregister_framebuffer(): if the mode to be freed exists in fb_display[], set the corresponding mode pointer to NULL.
CVE-2023-53769 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virt/coco/sev-guest: Double-buffer messages The encryption algorithms read and write directly to shared unencrypted memory, which may leak information as well as permit the host to tamper with the message integrity. Instead, copy whole messages in or out as needed before doing any computation on them.
CVE-2025-40321 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix crash while sending Action Frames in standalone AP Mode Currently, whenever there is a need to transmit an Action frame, the brcmfmac driver always uses the P2P vif to send the "actframe" IOVAR to firmware. The P2P interfaces were available when wpa_supplicant is managing the wlan interface. However, the P2P interfaces are not created/initialized when only hostapd is managing the wlan interface. And if hostapd receives an ANQP Query REQ Action frame even from an un-associated STA, the brcmfmac driver tries to use an uninitialized P2P vif pointer for sending the IOVAR to firmware. This NULL pointer dereferencing triggers a driver crash. [ 1417.074538] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [...] [ 1417.075188] Hardware name: Raspberry Pi 4 Model B Rev 1.5 (DT) [...] [ 1417.075653] Call trace: [ 1417.075662] brcmf_p2p_send_action_frame+0x23c/0xc58 [brcmfmac] [ 1417.075738] brcmf_cfg80211_mgmt_tx+0x304/0x5c0 [brcmfmac] [ 1417.075810] cfg80211_mlme_mgmt_tx+0x1b0/0x428 [cfg80211] [ 1417.076067] nl80211_tx_mgmt+0x238/0x388 [cfg80211] [ 1417.076281] genl_family_rcv_msg_doit+0xe0/0x158 [ 1417.076302] genl_rcv_msg+0x220/0x2a0 [ 1417.076317] netlink_rcv_skb+0x68/0x140 [ 1417.076330] genl_rcv+0x40/0x60 [ 1417.076343] netlink_unicast+0x330/0x3b8 [ 1417.076357] netlink_sendmsg+0x19c/0x3f8 [ 1417.076370] __sock_sendmsg+0x64/0xc0 [ 1417.076391] ____sys_sendmsg+0x268/0x2a0 [ 1417.076408] ___sys_sendmsg+0xb8/0x118 [ 1417.076427] __sys_sendmsg+0x90/0xf8 [ 1417.076445] __arm64_sys_sendmsg+0x2c/0x40 [ 1417.076465] invoke_syscall+0x50/0x120 [ 1417.076486] el0_svc_common.constprop.0+0x48/0xf0 [ 1417.076506] do_el0_svc+0x24/0x38 [ 1417.076525] el0_svc+0x30/0x100 [ 1417.076548] el0t_64_sync_handler+0x100/0x130 [ 1417.076569] el0t_64_sync+0x190/0x198 [ 1417.076589] Code: f9401e80 aa1603e2 f9403be1 5280e483 (f9400000) Fix this, by always using the vif corresponding to the wdev on which the Action frame Transmission request was initiated by the userspace. This way, even if P2P vif is not available, the IOVAR is sent to firmware on AP vif and the ANQP Query RESP Action frame is transmitted without crashing the driver. Move init_completion() for "send_af_done" from brcmf_p2p_create_p2pdev() to brcmf_p2p_attach(). Because the former function would not get executed when only hostapd is managing wlan interface, and it is not safe to do reinit_completion() later in brcmf_p2p_tx_action_frame(), without any prior init_completion(). And in the brcmf_p2p_tx_action_frame() function, the condition check for P2P Presence response frame is not needed, since the wpa_supplicant is properly sending the P2P Presense Response frame on the P2P-GO vif instead of the P2P-Device vif. [Cc stable]
CVE-2025-40308 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: bcsp: receive data only if registered Currently, bcsp_recv() can be called even when the BCSP protocol has not been registered. This leads to a NULL pointer dereference, as shown in the following stack trace: KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f] RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590 Call Trace: <TASK> hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627 tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290 tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f To prevent this, ensure that the HCI_UART_REGISTERED flag is set before processing received data. If the protocol is not registered, return -EUNATCH.
CVE-2023-53761 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: USB: usbtmc: Fix direction for 0-length ioctl control messages The syzbot fuzzer found a problem in the usbtmc driver: When a user submits an ioctl for a 0-length control transfer, the driver does not check that the direction is set to OUT: ------------[ cut here ]------------ usb 3-1: BOGUS control dir, pipe 80000b80 doesn't match bRequestType fd WARNING: CPU: 0 PID: 5100 at drivers/usb/core/urb.c:411 usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411 Modules linked in: CPU: 0 PID: 5100 Comm: syz-executor428 Not tainted 6.3.0-syzkaller-12049-g58390c8ce1bd #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023 RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411 Code: 7c 24 40 e8 1b 13 5c fb 48 8b 7c 24 40 e8 21 1d f0 fe 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 e0 b5 fc 8a e8 19 c8 23 fb <0f> 0b e9 9f ee ff ff e8 ed 12 5c fb 0f b6 1d 12 8a 3c 08 31 ff 41 RSP: 0018:ffffc90003d2fb00 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff8880789e9058 RCX: 0000000000000000 RDX: ffff888029593b80 RSI: ffffffff814c1447 RDI: 0000000000000001 RBP: ffff88801ea742f8 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000001 R12: ffff88802915e528 R13: 00000000000000fd R14: 0000000080000b80 R15: ffff8880222b3100 FS: 0000555556ca63c0(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f9ef4d18150 CR3: 0000000073e5b000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58 usb_internal_control_msg drivers/usb/core/message.c:102 [inline] usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153 usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1954 [inline] usbtmc_ioctl+0x1b3d/0x2840 drivers/usb/class/usbtmc.c:2097 To fix this, we must override the direction in the bRequestType field of the control request structure when the length is 0.