Filtered by vendor Linux
Subscriptions
Total
15922 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-50643 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_copy_file_range() If the file is used by swap, before return -EOPNOTSUPP, should free the xid, otherwise, the xid will be leaked. | ||||
| CVE-2022-50647 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: RISC-V: Make port I/O string accessors actually work Fix port I/O string accessors such as `insb', `outsb', etc. which use the physical PCI port I/O address rather than the corresponding memory mapping to get at the requested location, which in turn breaks at least accesses made by our parport driver to a PCIe parallel port such as: PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20 parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP] causing a memory access fault: Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008 Oops [#1] Modules linked in: CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23 Hardware name: SiFive HiFive Unmatched A00 (DT) epc : parport_pc_fifo_write_block_pio+0x266/0x416 ra : parport_pc_fifo_write_block_pio+0xb4/0x416 epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60 gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000 t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0 s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000 a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000 s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50 s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000 s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000 s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930 t5 : 0000000000001000 t6 : 0000000000040000 status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f [<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200 [<ffffffff8053bbc0>] parport_write+0x46/0xf8 [<ffffffff8050530e>] lp_write+0x158/0x2d2 [<ffffffff80185716>] vfs_write+0x8e/0x2c2 [<ffffffff80185a74>] ksys_write+0x52/0xc2 [<ffffffff80185af2>] sys_write+0xe/0x16 [<ffffffff80003770>] ret_from_syscall+0x0/0x2 ---[ end trace 0000000000000000 ]--- For simplicity address the problem by adding PCI_IOBASE to the physical address requested in the respective wrapper macros only, observing that the raw accessors such as `__insb', `__outsb', etc. are not supposed to be used other than by said macros. Remove the cast to `long' that is no longer needed on `addr' now that it is used as an offset from PCI_IOBASE and add parentheses around `addr' needed for predictable evaluation in macro expansion. No need to make said adjustments in separate changes given that current code is gravely broken and does not ever work. | ||||
| CVE-2022-50650 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reference state management for synchronous callbacks Currently, verifier verifies callback functions (sync and async) as if they will be executed once, (i.e. it explores execution state as if the function was being called once). The next insn to explore is set to start of subprog and the exit from nested frame is handled using curframe > 0 and prepare_func_exit. In case of async callback it uses a customized variant of push_stack simulating a kind of branch to set up custom state and execution context for the async callback. While this approach is simple and works when callback really will be executed only once, it is unsafe for all of our current helpers which are for_each style, i.e. they execute the callback multiple times. A callback releasing acquired references of the caller may do so multiple times, but currently verifier sees it as one call inside the frame, which then returns to caller. Hence, it thinks it released some reference that the cb e.g. got access through callback_ctx (register filled inside cb from spilled typed register on stack). Similarly, it may see that an acquire call is unpaired inside the callback, so the caller will copy the reference state of callback and then will have to release the register with new ref_obj_ids. But again, the callback may execute multiple times, but the verifier will only account for acquired references for a single symbolic execution of the callback, which will cause leaks. Note that for async callback case, things are different. While currently we have bpf_timer_set_callback which only executes it once, even for multiple executions it would be safe, as reference state is NULL and check_reference_leak would force program to release state before BPF_EXIT. The state is also unaffected by analysis for the caller frame. Hence async callback is safe. Since we want the reference state to be accessible, e.g. for pointers loaded from stack through callback_ctx's PTR_TO_STACK, we still have to copy caller's reference_state to callback's bpf_func_state, but we enforce that whatever references it adds to that reference_state has been released before it hits BPF_EXIT. This requires introducing a new callback_ref member in the reference state to distinguish between caller vs callee references. Hence, check_reference_leak now errors out if it sees we are in callback_fn and we have not released callback_ref refs. Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2 etc. we need to also distinguish between whether this particular ref belongs to this callback frame or parent, and only error for our own, so we store state->frameno (which is always non-zero for callbacks). In short, callbacks can read parent reference_state, but cannot mutate it, to be able to use pointers acquired by the caller. They must only undo their changes (by releasing their own acquired_refs before BPF_EXIT) on top of caller reference_state before returning (at which point the caller and callback state will match anyway, so no need to copy it back to caller). | ||||
| CVE-2022-50651 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ethtool: eeprom: fix null-deref on genl_info in dump The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on genl_info in dump") is also needed for ethtool eeprom. | ||||
| CVE-2023-53795 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: iommufd: IOMMUFD_DESTROY should not increase the refcount syzkaller found a race where IOMMUFD_DESTROY increments the refcount: obj = iommufd_get_object(ucmd->ictx, cmd->id, IOMMUFD_OBJ_ANY); if (IS_ERR(obj)) return PTR_ERR(obj); iommufd_ref_to_users(obj); /* See iommufd_ref_to_users() */ if (!iommufd_object_destroy_user(ucmd->ictx, obj)) As part of the sequence to join the two existing primitives together. Allowing the refcount the be elevated without holding the destroy_rwsem violates the assumption that all temporary refcount elevations are protected by destroy_rwsem. Racing IOMMUFD_DESTROY with iommufd_object_destroy_user() will cause spurious failures: WARNING: CPU: 0 PID: 3076 at drivers/iommu/iommufd/device.c:477 iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:478 Modules linked in: CPU: 0 PID: 3076 Comm: syz-executor.0 Not tainted 6.3.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023 RIP: 0010:iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:477 Code: e8 3d 4e 00 00 84 c0 74 01 c3 0f 0b c3 0f 1f 44 00 00 f3 0f 1e fa 48 89 fe 48 8b bf a8 00 00 00 e8 1d 4e 00 00 84 c0 74 01 c3 <0f> 0b c3 0f 1f 44 00 00 41 57 41 56 41 55 4c 8d ae d0 00 00 00 41 RSP: 0018:ffffc90003067e08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888109ea0300 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000ffffffff RBP: 0000000000000004 R08: 0000000000000000 R09: ffff88810bbb3500 R10: ffff88810bbb3e48 R11: 0000000000000000 R12: ffffc90003067e88 R13: ffffc90003067ea8 R14: ffff888101249800 R15: 00000000fffffffe FS: 00007ff7254fe6c0(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555557262da8 CR3: 000000010a6fd000 CR4: 0000000000350ef0 Call Trace: <TASK> iommufd_test_create_access drivers/iommu/iommufd/selftest.c:596 [inline] iommufd_test+0x71c/0xcf0 drivers/iommu/iommufd/selftest.c:813 iommufd_fops_ioctl+0x10f/0x1b0 drivers/iommu/iommufd/main.c:337 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x84/0xc0 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The solution is to not increment the refcount on the IOMMUFD_DESTROY path at all. Instead use the xa_lock to serialize everything. The refcount check == 1 and xa_erase can be done under a single critical region. This avoids the need for any refcount incrementing. It has the downside that if userspace races destroy with other operations it will get an EBUSY instead of waiting, but this is kind of racing is already dangerous. | ||||
| CVE-2023-53818 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ARM: zynq: Fix refcount leak in zynq_early_slcr_init of_find_compatible_node() returns a node pointer with refcount incremented, we should use of_node_put() on error path. Add missing of_node_put() to avoid refcount leak. | ||||
| CVE-2022-50660 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ipw2200: fix memory leak in ipw_wdev_init() In the error path of ipw_wdev_init(), exception value is returned, and the memory applied for in the function is not released. Also the memory is not released in ipw_pci_probe(). As a result, memory leakage occurs. So memory release needs to be added to the error path of ipw_wdev_init(). | ||||
| CVE-2022-50664 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: fix leak of memory fw | ||||
| CVE-2022-50665 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(), as below, it will not print when debug_mask is not set ATH11K_DBG_DATA. ath11k_dbg(ab, ATH11K_DBG_DATA, "failed to find the peer with peer_id %d\n", ppdu_info.peer_id); When run scan with station disconnected, the peer_id is 0 for case HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is reset to 0 in the while loop, so it does not match condition of the check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and then the log "failed to find the peer with peer_id 0" print after the check in the loop, it is below call stack when debug_mask is set ATH11K_DBG_DATA. The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv") add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in ath11k_dp_rx_process_mon_status(), but the commit does not initialize the peer_id to HAL_INVALID_PEERID, then lead the check mis-match. Callstack of the failed log: [12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k] [12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd [12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246 [12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000 [12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18 [12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000 [12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40 [12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000 [12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000 [12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0 [12335.689360] Call Trace: [12335.689377] <IRQ> [12335.689418] ? rcu_read_lock_held_common+0x12/0x50 [12335.689447] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689471] ? rcu_read_lock_held_common+0x12/0x50 [12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689653] ? lock_acquire+0xef/0x360 [12335.689681] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k] [12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689860] call_timer_fn+0xb2/0x2f0 [12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689970] run_timer_softirq+0x21f/0x540 [12335.689999] ? ktime_get+0xad/0x160 [12335.690025] ? lapic_next_deadline+0x2c/0x40 [12335.690053] ? clockevents_program_event+0x82/0x100 [12335.690093] __do_softirq+0x151/0x4a8 [12335.690135] irq_exit_rcu+0xc9/0x100 [12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0 [12335.690189] </IRQ> [12335.690204] <TASK> [12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20 Reset the default value to HAL_INVALID_PEERID each time after memset of ppdu_info as well as others memset which existed in function ath11k_dp_rx_process_mon_status(), then the failed log disappeared. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3 | ||||
| CVE-2022-50678 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix invalid address access when enabling SCAN log level The variable i is changed when setting random MAC address and causes invalid address access when printing the value of pi->reqs[i]->reqid. We replace reqs index with ri to fix the issue. [ 136.726473] Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000 [ 136.737365] Mem abort info: [ 136.740172] ESR = 0x96000004 [ 136.743359] Exception class = DABT (current EL), IL = 32 bits [ 136.749294] SET = 0, FnV = 0 [ 136.752481] EA = 0, S1PTW = 0 [ 136.755635] Data abort info: [ 136.758514] ISV = 0, ISS = 0x00000004 [ 136.762487] CM = 0, WnR = 0 [ 136.765522] user pgtable: 4k pages, 48-bit VAs, pgdp = 000000005c4e2577 [ 136.772265] [0000000000000000] pgd=0000000000000000 [ 136.777160] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 136.782732] Modules linked in: brcmfmac(O) brcmutil(O) cfg80211(O) compat(O) [ 136.789788] Process wificond (pid: 3175, stack limit = 0x00000000053048fb) [ 136.796664] CPU: 3 PID: 3175 Comm: wificond Tainted: G O 4.19.42-00001-g531a5f5 #1 [ 136.805532] Hardware name: Freescale i.MX8MQ EVK (DT) [ 136.810584] pstate: 60400005 (nZCv daif +PAN -UAO) [ 136.815429] pc : brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac] [ 136.821811] lr : brcmf_pno_config_sched_scans+0x67c/0xa80 [brcmfmac] [ 136.828162] sp : ffff00000e9a3880 [ 136.831475] x29: ffff00000e9a3890 x28: ffff800020543400 [ 136.836786] x27: ffff8000b1008880 x26: ffff0000012bf6a0 [ 136.842098] x25: ffff80002054345c x24: ffff800088d22400 [ 136.847409] x23: ffff0000012bf638 x22: ffff0000012bf6d8 [ 136.852721] x21: ffff8000aced8fc0 x20: ffff8000ac164400 [ 136.858032] x19: ffff00000e9a3946 x18: 0000000000000000 [ 136.863343] x17: 0000000000000000 x16: 0000000000000000 [ 136.868655] x15: ffff0000093f3b37 x14: 0000000000000050 [ 136.873966] x13: 0000000000003135 x12: 0000000000000000 [ 136.879277] x11: 0000000000000000 x10: ffff000009a61888 [ 136.884589] x9 : 000000000000000f x8 : 0000000000000008 [ 136.889900] x7 : 303a32303d726464 x6 : ffff00000a1f957d [ 136.895211] x5 : 0000000000000000 x4 : ffff00000e9a3942 [ 136.900523] x3 : 0000000000000000 x2 : ffff0000012cead8 [ 136.905834] x1 : ffff0000012bf6d8 x0 : 0000000000000000 [ 136.911146] Call trace: [ 136.913623] brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac] [ 136.919658] brcmf_pno_start_sched_scan+0xa4/0x118 [brcmfmac] [ 136.925430] brcmf_cfg80211_sched_scan_start+0x80/0xe0 [brcmfmac] [ 136.931636] nl80211_start_sched_scan+0x140/0x308 [cfg80211] [ 136.937298] genl_rcv_msg+0x358/0x3f4 [ 136.940960] netlink_rcv_skb+0xb4/0x118 [ 136.944795] genl_rcv+0x34/0x48 [ 136.947935] netlink_unicast+0x264/0x300 [ 136.951856] netlink_sendmsg+0x2e4/0x33c [ 136.955781] __sys_sendto+0x120/0x19c | ||||
| CVE-2023-53826 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show() Wear-leveling entry could be freed in error path, which may be accessed again in eraseblk_count_seq_show(), for example: __erase_worker eraseblk_count_seq_show wl = ubi->lookuptbl[*block_number] if (wl) wl_entry_destroy ubi->lookuptbl[e->pnum] = NULL kmem_cache_free(ubi_wl_entry_slab, e) erase_count = wl->ec // UAF! Wear-leveling entry updating/accessing in ubi->lookuptbl should be protected by ubi->wl_lock, fix it by adding ubi->wl_lock to serialize wl entry accessing between wl_entry_destroy() and eraseblk_count_seq_show(). Fetch a reproducer in [Link]. | ||||
| CVE-2023-53827 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix use-after-free in l2cap_disconnect_{req,rsp} Similar to commit d0be8347c623 ("Bluetooth: L2CAP: Fix use-after-free caused by l2cap_chan_put"), just use l2cap_chan_hold_unless_zero to prevent referencing a channel that is about to be destroyed. | ||||
| CVE-2023-53831 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: read sk->sk_family once in sk_mc_loop() syzbot is playing with IPV6_ADDRFORM quite a lot these days, and managed to hit the WARN_ON_ONCE(1) in sk_mc_loop() We have many more similar issues to fix. WARNING: CPU: 1 PID: 1593 at net/core/sock.c:782 sk_mc_loop+0x165/0x260 Modules linked in: CPU: 1 PID: 1593 Comm: kworker/1:3 Not tainted 6.1.40-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 Workqueue: events_power_efficient gc_worker RIP: 0010:sk_mc_loop+0x165/0x260 net/core/sock.c:782 Code: 34 1b fd 49 81 c7 18 05 00 00 4c 89 f8 48 c1 e8 03 42 80 3c 20 00 74 08 4c 89 ff e8 25 36 6d fd 4d 8b 37 eb 13 e8 db 33 1b fd <0f> 0b b3 01 eb 34 e8 d0 33 1b fd 45 31 f6 49 83 c6 38 4c 89 f0 48 RSP: 0018:ffffc90000388530 EFLAGS: 00010246 RAX: ffffffff846d9b55 RBX: 0000000000000011 RCX: ffff88814f884980 RDX: 0000000000000102 RSI: ffffffff87ae5160 RDI: 0000000000000011 RBP: ffffc90000388550 R08: 0000000000000003 R09: ffffffff846d9a65 R10: 0000000000000002 R11: ffff88814f884980 R12: dffffc0000000000 R13: ffff88810dbee000 R14: 0000000000000010 R15: ffff888150084000 FS: 0000000000000000(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000180 CR3: 000000014ee5b000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> [<ffffffff8507734f>] ip6_finish_output2+0x33f/0x1ae0 net/ipv6/ip6_output.c:83 [<ffffffff85062766>] __ip6_finish_output net/ipv6/ip6_output.c:200 [inline] [<ffffffff85062766>] ip6_finish_output+0x6c6/0xb10 net/ipv6/ip6_output.c:211 [<ffffffff85061f8c>] NF_HOOK_COND include/linux/netfilter.h:298 [inline] [<ffffffff85061f8c>] ip6_output+0x2bc/0x3d0 net/ipv6/ip6_output.c:232 [<ffffffff852071cf>] dst_output include/net/dst.h:444 [inline] [<ffffffff852071cf>] ip6_local_out+0x10f/0x140 net/ipv6/output_core.c:161 [<ffffffff83618fb4>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:483 [inline] [<ffffffff83618fb4>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline] [<ffffffff83618fb4>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline] [<ffffffff83618fb4>] ipvlan_queue_xmit+0x1174/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677 [<ffffffff8361ddd9>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229 [<ffffffff84763fc0>] netdev_start_xmit include/linux/netdevice.h:4925 [inline] [<ffffffff84763fc0>] xmit_one net/core/dev.c:3644 [inline] [<ffffffff84763fc0>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660 [<ffffffff8494c650>] sch_direct_xmit+0x2a0/0x9c0 net/sched/sch_generic.c:342 [<ffffffff8494d883>] qdisc_restart net/sched/sch_generic.c:407 [inline] [<ffffffff8494d883>] __qdisc_run+0xb13/0x1e70 net/sched/sch_generic.c:415 [<ffffffff8478c426>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125 [<ffffffff84796eac>] net_tx_action+0x7ac/0x940 net/core/dev.c:5247 [<ffffffff858002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:599 [<ffffffff814c3fe8>] invoke_softirq kernel/softirq.c:430 [inline] [<ffffffff814c3fe8>] __irq_exit_rcu+0xc8/0x170 kernel/softirq.c:683 [<ffffffff814c3f09>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:695 | ||||
| CVE-2023-53834 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iio: adc: ina2xx: avoid NULL pointer dereference on OF device match The affected lines were resulting in a NULL pointer dereference on our platform because the device tree contained the following list of compatible strings: power-sensor@40 { compatible = "ti,ina232", "ti,ina231"; ... }; Since the driver doesn't declare a compatible string "ti,ina232", the OF matching succeeds on "ti,ina231". But the I2C device ID info is populated via the first compatible string, cf. modalias population in of_i2c_get_board_info(). Since there is no "ina232" entry in the legacy I2C device ID table either, the struct i2c_device_id *id pointer in the probe function is NULL. Fix this by using the already populated type variable instead, which points to the proper driver data. Since the name is also wanted, add a generic one to the ina2xx_config table. | ||||
| CVE-2023-53857 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: bpf_sk_storage: Fix invalid wait context lockdep report './test_progs -t test_local_storage' reported a splat: [ 27.137569] ============================= [ 27.138122] [ BUG: Invalid wait context ] [ 27.138650] 6.5.0-03980-gd11ae1b16b0a #247 Tainted: G O [ 27.139542] ----------------------------- [ 27.140106] test_progs/1729 is trying to lock: [ 27.140713] ffff8883ef047b88 (stock_lock){-.-.}-{3:3}, at: local_lock_acquire+0x9/0x130 [ 27.141834] other info that might help us debug this: [ 27.142437] context-{5:5} [ 27.142856] 2 locks held by test_progs/1729: [ 27.143352] #0: ffffffff84bcd9c0 (rcu_read_lock){....}-{1:3}, at: rcu_lock_acquire+0x4/0x40 [ 27.144492] #1: ffff888107deb2c0 (&storage->lock){..-.}-{2:2}, at: bpf_local_storage_update+0x39e/0x8e0 [ 27.145855] stack backtrace: [ 27.146274] CPU: 0 PID: 1729 Comm: test_progs Tainted: G O 6.5.0-03980-gd11ae1b16b0a #247 [ 27.147550] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 27.149127] Call Trace: [ 27.149490] <TASK> [ 27.149867] dump_stack_lvl+0x130/0x1d0 [ 27.152609] dump_stack+0x14/0x20 [ 27.153131] __lock_acquire+0x1657/0x2220 [ 27.153677] lock_acquire+0x1b8/0x510 [ 27.157908] local_lock_acquire+0x29/0x130 [ 27.159048] obj_cgroup_charge+0xf4/0x3c0 [ 27.160794] slab_pre_alloc_hook+0x28e/0x2b0 [ 27.161931] __kmem_cache_alloc_node+0x51/0x210 [ 27.163557] __kmalloc+0xaa/0x210 [ 27.164593] bpf_map_kzalloc+0xbc/0x170 [ 27.165147] bpf_selem_alloc+0x130/0x510 [ 27.166295] bpf_local_storage_update+0x5aa/0x8e0 [ 27.167042] bpf_fd_sk_storage_update_elem+0xdb/0x1a0 [ 27.169199] bpf_map_update_value+0x415/0x4f0 [ 27.169871] map_update_elem+0x413/0x550 [ 27.170330] __sys_bpf+0x5e9/0x640 [ 27.174065] __x64_sys_bpf+0x80/0x90 [ 27.174568] do_syscall_64+0x48/0xa0 [ 27.175201] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 27.175932] RIP: 0033:0x7effb40e41ad [ 27.176357] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d8 [ 27.179028] RSP: 002b:00007ffe64c21fc8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141 [ 27.180088] RAX: ffffffffffffffda RBX: 00007ffe64c22768 RCX: 00007effb40e41ad [ 27.181082] RDX: 0000000000000020 RSI: 00007ffe64c22008 RDI: 0000000000000002 [ 27.182030] RBP: 00007ffe64c21ff0 R08: 0000000000000000 R09: 00007ffe64c22788 [ 27.183038] R10: 0000000000000064 R11: 0000000000000202 R12: 0000000000000000 [ 27.184006] R13: 00007ffe64c22788 R14: 00007effb42a1000 R15: 0000000000000000 [ 27.184958] </TASK> It complains about acquiring a local_lock while holding a raw_spin_lock. It means it should not allocate memory while holding a raw_spin_lock since it is not safe for RT. raw_spin_lock is needed because bpf_local_storage supports tracing context. In particular for task local storage, it is easy to get a "current" task PTR_TO_BTF_ID in tracing bpf prog. However, task (and cgroup) local storage has already been moved to bpf mem allocator which can be used after raw_spin_lock. The splat is for the sk storage. For sk (and inode) storage, it has not been moved to bpf mem allocator. Using raw_spin_lock or not, kzalloc(GFP_ATOMIC) could theoretically be unsafe in tracing context. However, the local storage helper requires a verifier accepted sk pointer (PTR_TO_BTF_ID), it is hypothetical if that (mean running a bpf prog in a kzalloc unsafe context and also able to hold a verifier accepted sk pointer) could happen. This patch avoids kzalloc after raw_spin_lock to silent the splat. There is an existing kzalloc before the raw_spin_lock. At that point, a kzalloc is very likely required because a lookup has just been done before. Thus, this patch always does the kzalloc before acq ---truncated--- | ||||
| CVE-2023-53861 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ext4: correct grp validation in ext4_mb_good_group Group corruption check will access memory of grp and will trigger kernel crash if grp is NULL. So do NULL check before corruption check. | ||||
| CVE-2023-53862 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: hfs: fix missing hfs_bnode_get() in __hfs_bnode_create Syzbot found a kernel BUG in hfs_bnode_put(): kernel BUG at fs/hfs/bnode.c:466! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 3634 Comm: kworker/u4:5 Not tainted 6.1.0-rc7-syzkaller-00190-g97ee9d1c1696 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: writeback wb_workfn (flush-7:0) RIP: 0010:hfs_bnode_put+0x46f/0x480 fs/hfs/bnode.c:466 Code: 8a 80 ff e9 73 fe ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a0 fe ff ff 48 89 df e8 db 8a 80 ff e9 93 fe ff ff e8 a1 68 2c ff <0f> 0b e8 9a 68 2c ff 0f 0b 0f 1f 84 00 00 00 00 00 55 41 57 41 56 RSP: 0018:ffffc90003b4f258 EFLAGS: 00010293 RAX: ffffffff825e318f RBX: 0000000000000000 RCX: ffff8880739dd7c0 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90003b4f430 R08: ffffffff825e2d9b R09: ffffed10045157d1 R10: ffffed10045157d1 R11: 1ffff110045157d0 R12: ffff8880228abe80 R13: ffff88807016c000 R14: dffffc0000000000 R15: ffff8880228abe00 FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa6ebe88718 CR3: 000000001e93d000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> hfs_write_inode+0x1bc/0xb40 write_inode fs/fs-writeback.c:1440 [inline] __writeback_single_inode+0x4d6/0x670 fs/fs-writeback.c:1652 writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1878 __writeback_inodes_wb+0x125/0x420 fs/fs-writeback.c:1949 wb_writeback+0x440/0x7b0 fs/fs-writeback.c:2054 wb_check_start_all fs/fs-writeback.c:2176 [inline] wb_do_writeback fs/fs-writeback.c:2202 [inline] wb_workfn+0x827/0xef0 fs/fs-writeback.c:2235 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK> The BUG_ON() is triggered at here: /* Dispose of resources used by a node */ void hfs_bnode_put(struct hfs_bnode *node) { if (node) { <skipped> BUG_ON(!atomic_read(&node->refcnt)); <- we have issue here!!!! <skipped> } } By tracing the refcnt, I found the node is created by hfs_bmap_alloc() with refcnt 1. Then the node is used by hfs_btree_write(). There is a missing of hfs_bnode_get() after find the node. The issue happened in following path: <alloc> hfs_bmap_alloc hfs_bnode_find __hfs_bnode_create <- allocate a new node with refcnt 1. hfs_bnode_put <- decrease the refcnt <write> hfs_btree_write hfs_bnode_find __hfs_bnode_create hfs_bnode_findhash <- find the node without refcnt increased. hfs_bnode_put <- trigger the BUG_ON() since refcnt is 0. | ||||
| CVE-2025-40341 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: futex: Don't leak robust_list pointer on exec race sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access() to check if the calling task is allowed to access another task's robust_list pointer. This check is racy against a concurrent exec() in the target process. During exec(), a task may transition from a non-privileged binary to a privileged one (e.g., setuid binary) and its credentials/memory mappings may change. If get_robust_list() performs ptrace_may_access() before this transition, it may erroneously allow access to sensitive information after the target becomes privileged. A racy access allows an attacker to exploit a window during which ptrace_may_access() passes before a target process transitions to a privileged state via exec(). For example, consider a non-privileged task T that is about to execute a setuid-root binary. An attacker task A calls get_robust_list(T) while T is still unprivileged. Since ptrace_may_access() checks permissions based on current credentials, it succeeds. However, if T begins exec immediately afterwards, it becomes privileged and may change its memory mappings. Because get_robust_list() proceeds to access T->robust_list without synchronizing with exec() it may read user-space pointers from a now-privileged process. This violates the intended post-exec access restrictions and could expose sensitive memory addresses or be used as a primitive in a larger exploit chain. Consequently, the race can lead to unauthorized disclosure of information across privilege boundaries and poses a potential security risk. Take a read lock on signal->exec_update_lock prior to invoking ptrace_may_access() and accessing the robust_list/compat_robust_list. This ensures that the target task's exec state remains stable during the check, allowing for consistent and synchronized validation of credentials. | ||||
| CVE-2025-40338 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Do not share the name pointer between components By sharing 'name' directly, tearing down components may lead to use-after-free errors. Duplicate the name to avoid that. At the same time, update the order of operations - since commit cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via config") the framework does not override component->name if set before invoking the initializer. | ||||
| CVE-2025-40337 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Correctly handle Rx checksum offload errors The stmmac_rx function would previously set skb->ip_summed to CHECKSUM_UNNECESSARY if hardware checksum offload (CoE) was enabled and the packet was of a known IP ethertype. However, this logic failed to check if the hardware had actually reported a checksum error. The hardware status, indicating a header or payload checksum failure, was being ignored at this stage. This could cause corrupt packets to be passed up the network stack as valid. This patch corrects the logic by checking the `csum_none` status flag, which is set when the hardware reports a checksum error. If this flag is set, skb->ip_summed is now correctly set to CHECKSUM_NONE, ensuring the kernel's network stack will perform its own validation and properly handle the corrupt packet. | ||||