Filtered by vendor Linux
Subscriptions
Total
15922 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53803 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix slab-out-of-bounds in ses_enclosure_data_process() A fix for: BUG: KASAN: slab-out-of-bounds in ses_enclosure_data_process+0x949/0xe30 [ses] Read of size 1 at addr ffff88a1b043a451 by task systemd-udevd/3271 Checking after (and before in next loop) addl_desc_ptr[1] is sufficient, we expect the size to be sanitized before first access to addl_desc_ptr[1]. Make sure we don't walk beyond end of page. | ||||
| CVE-2023-53802 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: htc_hst: free skb in ath9k_htc_rx_msg() if there is no callback function It is stated that ath9k_htc_rx_msg() either frees the provided skb or passes its management to another callback function. However, the skb is not freed in case there is no another callback function, and Syzkaller was able to cause a memory leak. Also minor comment fix. Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2023-53800 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ubi: Fix use-after-free when volume resizing failed There is an use-after-free problem reported by KASAN: ================================================================== BUG: KASAN: use-after-free in ubi_eba_copy_table+0x11f/0x1c0 [ubi] Read of size 8 at addr ffff888101eec008 by task ubirsvol/4735 CPU: 2 PID: 4735 Comm: ubirsvol Not tainted 6.1.0-rc1-00003-g84fa3304a7fc-dirty #14 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report+0x171/0x472 kasan_report+0xad/0x130 ubi_eba_copy_table+0x11f/0x1c0 [ubi] ubi_resize_volume+0x4f9/0xbc0 [ubi] ubi_cdev_ioctl+0x701/0x1850 [ubi] __x64_sys_ioctl+0x11d/0x170 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> When ubi_change_vtbl_record() returns an error in ubi_resize_volume(), "new_eba_tbl" will be freed on error handing path, but it is holded by "vol->eba_tbl" in ubi_eba_replace_table(). It means that the liftcycle of "vol->eba_tbl" and "vol" are different, so when resizing volume in next time, it causing an use-after-free fault. Fix it by not freeing "new_eba_tbl" after it replaced in ubi_eba_replace_table(), while will be freed in next volume resizing. | ||||
| CVE-2023-53799 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: crypto: api - Use work queue in crypto_destroy_instance The function crypto_drop_spawn expects to be called in process context. However, when an instance is unregistered while it still has active users, the last user may cause the instance to be freed in atomic context. Fix this by delaying the freeing to a work queue. | ||||
| CVE-2023-53798 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ethtool: Fix uninitialized number of lanes It is not possible to set the number of lanes when setting link modes using the legacy IOCTL ethtool interface. Since 'struct ethtool_link_ksettings' is not initialized in this path, drivers receive an uninitialized number of lanes in 'struct ethtool_link_ksettings::lanes'. When this information is later queried from drivers, it results in the ethtool code making decisions based on uninitialized memory, leading to the following KMSAN splat [1]. In practice, this most likely only happens with the tun driver that simply returns whatever it got in the set operation. As far as I can tell, this uninitialized memory is not leaked to user space thanks to the 'ethtool_ops->cap_link_lanes_supported' check in linkmodes_prepare_data(). Fix by initializing the structure in the IOCTL path. Did not find any more call sites that pass an uninitialized structure when calling 'ethtool_ops::set_link_ksettings()'. [1] BUG: KMSAN: uninit-value in ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline] BUG: KMSAN: uninit-value in ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333 ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline] ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333 ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640 genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline] genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065 netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0xa24/0xe40 net/socket.c:2501 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555 __sys_sendmsg net/socket.c:2584 [inline] __do_sys_sendmsg net/socket.c:2593 [inline] __se_sys_sendmsg net/socket.c:2591 [inline] __x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: tun_get_link_ksettings+0x37/0x60 drivers/net/tun.c:3544 __ethtool_get_link_ksettings+0x17b/0x260 net/ethtool/ioctl.c:441 ethnl_set_linkmodes+0xee/0x19d0 net/ethtool/linkmodes.c:327 ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640 genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline] genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065 netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg net/socket.c:747 [inline] ____sys_sendmsg+0xa24/0xe40 net/socket.c:2501 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555 __sys_sendmsg net/socket.c:2584 [inline] __do_sys_sendmsg net/socket.c:2593 [inline] __se_sys_sendmsg net/socket.c:2591 [inline] __x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was stored to memory at: tun_set_link_ksettings+0x37/0x60 drivers/net/tun.c:3553 ethtool_set_link_ksettings+0x600/0x690 net/ethtool/ioctl.c:609 __dev_ethtool net/ethtool/ioctl.c:3024 [inline] dev_ethtool+0x1db9/0x2a70 net/ethtool/ioctl.c:3078 dev_ioctl+0xb07/0x1270 net/core/dev_ioctl.c:524 sock_do_ioctl+0x295/0x540 net/socket.c:1213 sock_i ---truncated--- | ||||
| CVE-2023-53797 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: HID: wacom: Use ktime_t rather than int when dealing with timestamps Code which interacts with timestamps needs to use the ktime_t type returned by functions like ktime_get. The int type does not offer enough space to store these values, and attempting to use it is a recipe for problems. In this particular case, overflows would occur when calculating/storing timestamps leading to incorrect values being reported to userspace. In some cases these bad timestamps cause input handling in userspace to appear hung. | ||||
| CVE-2023-53794 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: cifs: fix session state check in reconnect to avoid use-after-free issue Don't collect exiting session in smb2_reconnect_server(), because it will be released soon. Note that the exiting session will stay in server->smb_ses_list until it complete the cifs_free_ipc() and logoff() and then delete itself from the list. | ||||
| CVE-2023-53792 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nvme-core: fix memory leak in dhchap_ctrl_secret Free dhchap_secret in nvme_ctrl_dhchap_ctrl_secret_store() before we return when nvme_auth_generate_key() returns error. | ||||
| CVE-2023-53790 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Zeroing allocated object from slab in bpf memory allocator Currently the freed element in bpf memory allocator may be immediately reused, for htab map the reuse will reinitialize special fields in map value (e.g., bpf_spin_lock), but lookup procedure may still access these special fields, and it may lead to hard-lockup as shown below: NMI backtrace for cpu 16 CPU: 16 PID: 2574 Comm: htab.bin Tainted: G L 6.1.0+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), RIP: 0010:queued_spin_lock_slowpath+0x283/0x2c0 ...... Call Trace: <TASK> copy_map_value_locked+0xb7/0x170 bpf_map_copy_value+0x113/0x3c0 __sys_bpf+0x1c67/0x2780 __x64_sys_bpf+0x1c/0x20 do_syscall_64+0x30/0x60 entry_SYSCALL_64_after_hwframe+0x46/0xb0 ...... </TASK> For htab map, just like the preallocated case, these is no need to initialize these special fields in map value again once these fields have been initialized. For preallocated htab map, these fields are initialized through __GFP_ZERO in bpf_map_area_alloc(), so do the similar thing for non-preallocated htab in bpf memory allocator. And there is no need to use __GFP_ZERO for per-cpu bpf memory allocator, because __alloc_percpu_gfp() does it implicitly. | ||||
| CVE-2023-53789 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Improve page fault error reporting If IOMMU domain for device group is not setup properly then we may hit IOMMU page fault. Current page fault handler assumes that domain is always setup and it will hit NULL pointer derefence (see below sample log). Lets check whether domain is setup or not and log appropriate message. Sample log: ---------- amdgpu 0000:00:01.0: amdgpu: SE 1, SH per SE 1, CU per SH 8, active_cu_number 6 BUG: kernel NULL pointer dereference, address: 0000000000000058 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 2 PID: 56 Comm: irq/24-AMD-Vi Not tainted 6.2.0-rc2+ #89 Hardware name: xxx RIP: 0010:report_iommu_fault+0x11/0x90 [...] Call Trace: <TASK> amd_iommu_int_thread+0x60c/0x760 ? __pfx_irq_thread_fn+0x10/0x10 irq_thread_fn+0x1f/0x60 irq_thread+0xea/0x1a0 ? preempt_count_add+0x6a/0xa0 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xe9/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> [joro: Edit commit message] | ||||
| CVE-2023-53788 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: hda/ca0132: fixup buffer overrun at tuning_ctl_set() tuning_ctl_set() might have buffer overrun at (X) if it didn't break from loop by matching (A). static int tuning_ctl_set(...) { for (i = 0; i < TUNING_CTLS_COUNT; i++) (A) if (nid == ca0132_tuning_ctls[i].nid) break; snd_hda_power_up(...); (X) dspio_set_param(..., ca0132_tuning_ctls[i].mid, ...); snd_hda_power_down(...); ^ return 1; } We will get below error by cppcheck sound/pci/hda/patch_ca0132.c:4229:2: note: After for loop, i has value 12 for (i = 0; i < TUNING_CTLS_COUNT; i++) ^ sound/pci/hda/patch_ca0132.c:4234:43: note: Array index out of bounds dspio_set_param(codec, ca0132_tuning_ctls[i].mid, 0x20, ^ This patch cares non match case. | ||||
| CVE-2023-53787 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: regulator: da9063: fix null pointer deref with partial DT config When some of the da9063 regulators do not have corresponding DT nodes a null pointer dereference occurs on boot because such regulators have no init_data causing the pointers calculated in da9063_check_xvp_constraints() to be invalid. Do not dereference them in this case. | ||||
| CVE-2023-53784 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: drm: bridge: dw_hdmi: fix connector access for scdc Commit 5d844091f237 ("drm/scdc-helper: Pimp SCDC debugs") changed the scdc interface to pick up an i2c adapter from a connector instead. However, in the case of dw-hdmi, the wrong connector was being used to pass i2c adapter information, since dw-hdmi's embedded connector structure is only populated when the bridge attachment callback explicitly asks for it. drm-meson is handling connector creation, so this won't happen, leading to a NULL pointer dereference. Fix it by having scdc functions access dw-hdmi's current connector pointer instead, which is assigned during the bridge enablement stage. [narmstrong: moved Fixes tag before first S-o-b and added Reported-by tag] | ||||
| CVE-2023-53779 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mfd: dln2: Fix memory leak in dln2_probe() When dln2_setup_rx_urbs() in dln2_probe() fails, error out_free forgets to call usb_put_dev() to decrease the refcount of dln2->usb_dev. Fix this by adding usb_put_dev() in the error handling code of dln2_probe(). | ||||
| CVE-2023-53778 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Clean up integer overflow checking in map_user_pages() The encode_dma() function has some validation on in_trans->size but it would be more clear to move those checks to find_and_map_user_pages(). The encode_dma() had two checks: if (in_trans->addr + in_trans->size < in_trans->addr || !in_trans->size) return -EINVAL; The in_trans->addr variable is the starting address. The in_trans->size variable is the total size of the transfer. The transfer can occur in parts and the resources->xferred_dma_size tracks how many bytes we have already transferred. This patch introduces a new variable "remaining" which represents the amount we want to transfer (in_trans->size) minus the amount we have already transferred (resources->xferred_dma_size). I have modified the check for if in_trans->size is zero to instead check if in_trans->size is less than resources->xferred_dma_size. If we have already transferred more bytes than in_trans->size then there are negative bytes remaining which doesn't make sense. If there are zero bytes remaining to be copied, just return success. The check in encode_dma() checked that "addr + size" could not overflow and barring a driver bug that should work, but it's easier to check if we do this in parts. First check that "in_trans->addr + resources->xferred_dma_size" is safe. Then check that "xfer_start_addr + remaining" is safe. My final concern was that we are dealing with u64 values but on 32bit systems the kmalloc() function will truncate the sizes to 32 bits. So I calculated "total = in_trans->size + offset_in_page(xfer_start_addr);" and returned -EINVAL if it were >= SIZE_MAX. This will not affect 64bit systems. | ||||
| CVE-2023-53777 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: erofs: kill hooked chains to avoid loops on deduplicated compressed images After heavily stressing EROFS with several images which include a hand-crafted image of repeated patterns for more than 46 days, I found two chains could be linked with each other almost simultaneously and form a loop so that the entire loop won't be submitted. As a consequence, the corresponding file pages will remain locked forever. It can be _only_ observed on data-deduplicated compressed images. For example, consider two chains with five pclusters in total: Chain 1: 2->3->4->5 -- The tail pcluster is 5; Chain 2: 5->1->2 -- The tail pcluster is 2. Chain 2 could link to Chain 1 with pcluster 5; and Chain 1 could link to Chain 2 at the same time with pcluster 2. Since hooked chains are all linked locklessly now, I have no idea how to simply avoid the race. Instead, let's avoid hooked chains completely until I could work out a proper way to fix this and end users finally tell us that it's needed to add it back. Actually, this optimization can be found with multi-threaded workloads (especially even more often on deduplicated compressed images), yet I'm not sure about the overall system impacts of not having this compared with implementation complexity. | ||||
| CVE-2022-50679 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: i40e: Fix DMA mappings leak During reallocation of RX buffers, new DMA mappings are created for those buffers. steps for reproduction: while : do for ((i=0; i<=8160; i=i+32)) do ethtool -G enp130s0f0 rx $i tx $i sleep 0.5 ethtool -g enp130s0f0 done done This resulted in crash: i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536 Driver BUG WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50 Call Trace: i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b Missing register, driver bug WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140 Call Trace: xdp_rxq_info_unreg+0x1e/0x50 i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b This was caused because of new buffers with different RX ring count should substitute older ones, but those buffers were freed in i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi, thus kfree on rx_bi caused leak of already mapped DMA. Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally reallocate back to rx_bi when BPF program unloads. If BPF program is loaded/unloaded and XSK pools are created, reallocate RX queues accordingly in XSP_SETUP_XSK_POOL handler. | ||||
| CVE-2022-50676 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks() syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section protected by lock_sock() without realizing that rds_send_xmit() might call lock_sock(). We don't need to protect cancel_delayed_work_sync() using lock_sock(), for even if rds_{send,recv}_worker() re-queued this work while __flush_work() from cancel_delayed_work_sync() was waiting for this work to complete, retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP bit. | ||||
| CVE-2022-50674 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: riscv: vdso: fix NULL deference in vdso_join_timens() when vfork Testing tools/testing/selftests/timens/vfork_exec.c got below kernel log: [ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020 [ 6.842255] Oops [#1] [ 6.842871] Modules linked in: [ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8 [ 6.845861] Hardware name: riscv-virtio,qemu (DT) [ 6.848009] epc : vdso_join_timens+0xd2/0x110 [ 6.850097] ra : vdso_join_timens+0xd2/0x110 [ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0 [ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030 [ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40 [ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c [ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000 [ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038 [ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000 [ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38 [ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e [ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f [ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00 [ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d [ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a [ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4 [ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0 [ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214 [ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4 [ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee [ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48 [ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2 [ 6.877484] ---[ end trace 0000000000000000 ]--- This is because the mm->context.vdso_info is NULL in vfork case. From another side, mm->context.vdso_info either points to vdso info for RV64 or vdso info for compat, there's no need to bloat riscv's mm_context_t, we can handle the difference when setup the additional page for vdso. | ||||
| CVE-2022-50672 | 1 Linux | 1 Linux Kernel | 2025-12-09 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mailbox: zynq-ipi: fix error handling while device_register() fails If device_register() fails, it has two issues: 1. The name allocated by dev_set_name() is leaked. 2. The parent of device is not NULL, device_unregister() is called in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because of removing not added device. Call put_device() to give up the reference, so the name is freed in kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes() to avoid null-ptr-deref. | ||||