Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Eus
Subscriptions
Total
3034 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-26646 | 4 Apple, Linux, Microsoft and 1 more | 8 Macos, Linux Kernel, .net and 5 more | 2025-09-10 | 8 High |
| External control of file name or path in .NET, Visual Studio, and Build Tools for Visual Studio allows an authorized attacker to perform spoofing over a network. | ||||
| CVE-2025-21172 | 4 Apple, Linux, Microsoft and 1 more | 9 Macos, Linux Kernel, .net and 6 more | 2025-09-09 | 7.5 High |
| .NET and Visual Studio Remote Code Execution Vulnerability | ||||
| CVE-2025-21173 | 3 Linux, Microsoft, Redhat | 5 Linux Kernel, .net, Visual Studio 2022 and 2 more | 2025-09-09 | 7.3 High |
| .NET Elevation of Privilege Vulnerability | ||||
| CVE-2025-21176 | 4 Apple, Linux, Microsoft and 1 more | 22 Macos, Linux Kernel, .net and 19 more | 2025-09-09 | 8.8 High |
| .NET, .NET Framework, and Visual Studio Remote Code Execution Vulnerability | ||||
| CVE-2024-46981 | 3 Debian, Redhat, Redis | 8 Debian Linux, Discovery, Enterprise Linux and 5 more | 2025-09-05 | 7 High |
| Redis is an open source, in-memory database that persists on disk. An authenticated user may use a specially crafted Lua script to manipulate the garbage collector and potentially lead to remote code execution. The problem is fixed in 7.4.2, 7.2.7, and 6.2.17. An additional workaround to mitigate the problem without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to restrict EVAL and EVALSHA commands. | ||||
| CVE-2023-1393 | 3 Fedoraproject, Redhat, X.org | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-29 | 7.8 High |
| A flaw was found in X.Org Server Overlay Window. A Use-After-Free may lead to local privilege escalation. If a client explicitly destroys the compositor overlay window (aka COW), the Xserver would leave a dangling pointer to that window in the CompScreen structure, which will trigger a use-after-free later. | ||||
| CVE-2023-38545 | 5 Fedoraproject, Haxx, Microsoft and 2 more | 19 Fedora, Libcurl, Windows 10 1809 and 16 more | 2025-08-27 | 8.8 High |
| This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy handshake. When curl is asked to pass along the host name to the SOCKS5 proxy to allow that to resolve the address instead of it getting done by curl itself, the maximum length that host name can be is 255 bytes. If the host name is detected to be longer, curl switches to local name resolving and instead passes on the resolved address only. Due to this bug, the local variable that means "let the host resolve the name" could get the wrong value during a slow SOCKS5 handshake, and contrary to the intention, copy the too long host name to the target buffer instead of copying just the resolved address there. The target buffer being a heap based buffer, and the host name coming from the URL that curl has been told to operate with. | ||||
| CVE-2024-21145 | 3 Netapp, Oracle, Redhat | 15 Bluexp, Cloud Insights Storage Workload Security Agent, Oncommand Insight and 12 more | 2025-08-26 | 4.8 Medium |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: 2D). Supported versions that are affected are Oracle Java SE: 8u411, 8u411-perf, 11.0.23, 17.0.11, 21.0.3, 22.0.1; Oracle GraalVM for JDK: 17.0.11, 21.0.3, 22.0.1; Oracle GraalVM Enterprise Edition: 20.3.14 and 21.3.10. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N). | ||||
| CVE-2023-45802 | 4 Apache, Debian, Fedoraproject and 1 more | 6 Http Server, Debian Linux, Fedora and 3 more | 2025-08-25 | 5.9 Medium |
| When a HTTP/2 stream was reset (RST frame) by a client, there was a time window were the request's memory resources were not reclaimed immediately. Instead, de-allocation was deferred to connection close. A client could send new requests and resets, keeping the connection busy and open and causing the memory footprint to keep on growing. On connection close, all resources were reclaimed, but the process might run out of memory before that. This was found by the reporter during testing of CVE-2023-44487 (HTTP/2 Rapid Reset Exploit) with their own test client. During "normal" HTTP/2 use, the probability to hit this bug is very low. The kept memory would not become noticeable before the connection closes or times out. Users are recommended to upgrade to version 2.4.58, which fixes the issue. | ||||
| CVE-2022-1615 | 3 Fedoraproject, Redhat, Samba | 5 Fedora, Enterprise Linux, Rhel Eus and 2 more | 2025-08-22 | 5.5 Medium |
| In Samba, GnuTLS gnutls_rnd() can fail and give predictable random values. | ||||
| CVE-2018-25032 | 13 Apple, Azul, Debian and 10 more | 47 Mac Os X, Macos, Zulu and 44 more | 2025-08-21 | 7.5 High |
| zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches. | ||||
| CVE-2024-42472 | 3 Debian, Flatpak, Redhat | 8 Debian Linux, Flatpak, Enterprise Linux and 5 more | 2025-08-19 | 10 Critical |
| Flatpak is a Linux application sandboxing and distribution framework. Prior to versions 1.14.0 and 1.15.10, a malicious or compromised Flatpak app using persistent directories could access and write files outside of what it would otherwise have access to, which is an attack on integrity and confidentiality. When `persistent=subdir` is used in the application permissions (represented as `--persist=subdir` in the command-line interface), that means that an application which otherwise doesn't have access to the real user home directory will see an empty home directory with a writeable subdirectory `subdir`. Behind the scenes, this directory is actually a bind mount and the data is stored in the per-application directory as `~/.var/app/$APPID/subdir`. This allows existing apps that are not aware of the per-application directory to still work as intended without general home directory access. However, the application does have write access to the application directory `~/.var/app/$APPID` where this directory is stored. If the source directory for the `persistent`/`--persist` option is replaced by a symlink, then the next time the application is started, the bind mount will follow the symlink and mount whatever it points to into the sandbox. Partial protection against this vulnerability can be provided by patching Flatpak using the patches in commits ceec2ffc and 98f79773. However, this leaves a race condition that could be exploited by two instances of a malicious app running in parallel. Closing the race condition requires updating or patching the version of bubblewrap that is used by Flatpak to add the new `--bind-fd` option using the patch and then patching Flatpak to use it. If Flatpak has been configured at build-time with `-Dsystem_bubblewrap=bwrap` (1.15.x) or `--with-system-bubblewrap=bwrap` (1.14.x or older), or a similar option, then the version of bubblewrap that needs to be patched is a system copy that is distributed separately, typically `/usr/bin/bwrap`. This configuration is the one that is typically used in Linux distributions. If Flatpak has been configured at build-time with `-Dsystem_bubblewrap=` (1.15.x) or with `--without-system-bubblewrap` (1.14.x or older), then it is the bundled version of bubblewrap that is included with Flatpak that must be patched. This is typically installed as `/usr/libexec/flatpak-bwrap`. This configuration is the default when building from source code. For the 1.14.x stable branch, these changes are included in Flatpak 1.14.10. The bundled version of bubblewrap included in this release has been updated to 0.6.3. For the 1.15.x development branch, these changes are included in Flatpak 1.15.10. The bundled version of bubblewrap in this release is a Meson "wrap" subproject, which has been updated to 0.10.0. The 1.12.x and 1.10.x branches will not be updated for this vulnerability. Long-term support OS distributions should backport the individual changes into their versions of Flatpak and bubblewrap, or update to newer versions if their stability policy allows it. As a workaround, avoid using applications using the `persistent` (`--persist`) permission. | ||||
| CVE-2021-35567 | 5 Debian, Fedoraproject, Netapp and 2 more | 19 Debian Linux, Fedora, Active Iq Unified Manager and 16 more | 2025-08-15 | 6.8 Medium |
| Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 8u301, 11.0.12, 17; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows low privileged attacker with network access via Kerberos to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Oracle GraalVM Enterprise Edition, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 6.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:H/I:N/A:N). | ||||
| CVE-2025-4123 | 2 Grafana, Redhat | 6 Grafana, Enterprise Linux, Rhel Aus and 3 more | 2025-08-15 | 7.6 High |
| A cross-site scripting (XSS) vulnerability exists in Grafana caused by combining a client path traversal and open redirect. This allows attackers to redirect users to a website that hosts a frontend plugin that will execute arbitrary JavaScript. This vulnerability does not require editor permissions and if anonymous access is enabled, the XSS will work. If the Grafana Image Renderer plugin is installed, it is possible to exploit the open redirect to achieve a full read SSRF. The default Content-Security-Policy (CSP) in Grafana will block the XSS though the `connect-src` directive. | ||||
| CVE-2023-44443 | 2 Gimp, Redhat | 3 Gimp, Enterprise Linux, Rhel Eus | 2025-08-14 | 7.8 High |
| GIMP PSP File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PSP files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before writing to memory. An attacker can leverage this vulnerability to execute code in the context of the current process. . Was ZDI-CAN-22096. | ||||
| CVE-2025-3887 | 3 Debian, Gstreamer Project, Redhat | 7 Debian Linux, Gstreamer, Enterprise Linux and 4 more | 2025-08-13 | 8.8 High |
| GStreamer H265 Codec Parsing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation. The specific flaw exists within the parsing of H265 slice headers. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26596. | ||||
| CVE-2024-33601 | 4 Debian, Gnu, Netapp and 1 more | 27 Debian Linux, Glibc, H300s and 24 more | 2025-08-01 | 7.3 High |
| nscd: netgroup cache may terminate daemon on memory allocation failure The Name Service Cache Daemon's (nscd) netgroup cache uses xmalloc or xrealloc and these functions may terminate the process due to a memory allocation failure resulting in a denial of service to the clients. The flaw was introduced in glibc 2.15 when the cache was added to nscd. This vulnerability is only present in the nscd binary. | ||||
| CVE-2024-2398 | 6 Apple, Curl, Fedoraproject and 3 more | 27 Macos, Curl, Fedora and 24 more | 2025-07-30 | 8.6 High |
| When an application tells libcurl it wants to allow HTTP/2 server push, and the amount of received headers for the push surpasses the maximum allowed limit (1000), libcurl aborts the server push. When aborting, libcurl inadvertently does not free all the previously allocated headers and instead leaks the memory. Further, this error condition fails silently and is therefore not easily detected by an application. | ||||
| CVE-2023-52735 | 2 Linux, Redhat | 2 Linux Kernel, Rhel Eus | 2025-07-30 | 9.1 Critical |
| In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Don't let sock_map_{close,destroy,unhash} call itself sock_map proto callbacks should never call themselves by design. Protect against bugs like [1] and break out of the recursive loop to avoid a stack overflow in favor of a resource leak. [1] https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/ | ||||
| CVE-2024-12718 | 2 Python, Redhat | 7 Cpython, Enterprise Linux, Rhel Aus and 4 more | 2025-07-24 | 5.3 Medium |
| Allows modifying some file metadata (e.g. last modified) with filter="data" or file permissions (chmod) with filter="tar" of files outside the extraction directory. You are affected by this vulnerability if using the tarfile module to extract untrusted tar archives using TarFile.extractall() or TarFile.extract() using the filter= parameter with a value of "data" or "tar". See the tarfile extraction filters documentation https://docs.python.org/3/library/tarfile.html#tarfile-extraction-filter for more information. Only Python versions 3.12 or later are affected by these vulnerabilities, earlier versions don't include the extraction filter feature. Note that for Python 3.14 or later the default value of filter= changed from "no filtering" to `"data", so if you are relying on this new default behavior then your usage is also affected. Note that none of these vulnerabilities significantly affect the installation of source distributions which are tar archives as source distributions already allow arbitrary code execution during the build process. However when evaluating source distributions it's important to avoid installing source distributions with suspicious links. | ||||