Total 325368 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-68310 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump Do not block PCI config accesses through pci_cfg_access_lock() when executing the s390 variant of PCI error recovery: Acquire just device_lock() instead of pci_dev_lock() as powerpc's EEH and generig PCI AER processing do. During error recovery testing a pair of tasks was reported to be hung: mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working INFO: task kmcheck:72 blocked for more than 122 seconds. Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000 Call Trace: [<000000065256f030>] __schedule+0x2a0/0x590 [<000000065256f356>] schedule+0x36/0xe0 [<000000065256f572>] schedule_preempt_disabled+0x22/0x30 [<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8 [<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core] [<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core] [<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398 [<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0 INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds. Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000 Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core] Call Trace: [<000000065256f030>] __schedule+0x2a0/0x590 [<000000065256f356>] schedule+0x36/0xe0 [<0000000652172e28>] pci_wait_cfg+0x80/0xe8 [<0000000652172f94>] pci_cfg_access_lock+0x74/0x88 [<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core] [<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core] [<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core] [<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168 [<0000000652513212>] devlink_health_report+0x19a/0x230 [<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core] No kernel log of the exact same error with an upstream kernel is available - but the very same deadlock situation can be constructed there, too: - task: kmcheck mlx5_unload_one() tries to acquire devlink lock while the PCI error recovery code has set pdev->block_cfg_access by way of pci_cfg_access_lock() - task: kworker mlx5_crdump_collect() tries to set block_cfg_access through pci_cfg_access_lock() while devlink_health_report() had acquired the devlink lock. A similar deadlock situation can be reproduced by requesting a crdump with > devlink health dump show pci/<BDF> reporter fw_fatal while PCI error recovery is executed on the same <BDF> physical function by mlx5_core's pci_error_handlers. On s390 this can be injected with > zpcictl --reset-fw <BDF> Tests with this patch failed to reproduce that second deadlock situation, the devlink command is rejected with "kernel answers: Permission denied" - and we get a kernel log message of: mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5 because the config read of VSC_SEMAPHORE is rejected by the underlying hardware. Two prior attempts to address this issue have been discussed and ultimately rejected [see link], with the primary argument that s390's implementation of PCI error recovery is imposing restrictions that neither powerpc's EEH nor PCI AER handling need. Tests show that PCI error recovery on s390 is running to completion even without blocking access to PCI config space.
CVE-2025-68305 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sock: Prevent race in socket write iter and sock bind There is a potential race condition between sock bind and socket write iter. bind may free the same cmd via mgmt_pending before write iter sends the cmd, just as syzbot reported in UAF[1]. Here we use hci_dev_lock to synchronize the two, thereby avoiding the UAF mentioned in [1]. [1] syzbot reported: BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 Read of size 8 at addr ffff888077164818 by task syz.0.17/5989 Call Trace: mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316 set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Allocated by task 5989: mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296 set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 sock_write_iter+0x279/0x360 net/socket.c:1195 Freed by task 5991: mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline] mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257 mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477 hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
CVE-2025-68290 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: most: usb: fix double free on late probe failure The MOST subsystem has a non-standard registration function which frees the interface on registration failures and on deregistration. This unsurprisingly leads to bugs in the MOST drivers, and a couple of recent changes turned a reference underflow and use-after-free in the USB driver into several double free and a use-after-free on late probe failures.
CVE-2025-68243 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Check the TLS certificate fields in nfs_match_client() If the TLS security policy is of type RPC_XPRTSEC_TLS_X509, then the cert_serial and privkey_serial fields need to match as well since they define the client's identity, as presented to the server.
CVE-2025-65581 2025-12-18 5.3 Medium
An open redirect vulnerability exists in the Account module in Volosoft ABP Framework >= 5.1.0 and < 10.0.0-rc.2. Improper validation of the returnUrl parameter in the register function allows an attacker to redirect users to arbitrary external domains.
CVE-2025-52582 1 Grassroots Dicom Project 1 Grassroots Dicom 2025-12-18 7.4 High
An out-of-bounds read vulnerability exists in the Overlay::GrabOverlayFromPixelData functionality of Grassroot DICOM 3.024. A specially crafted DICOM file can lead to an information leak. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2025-33235 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 7.8 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges.
CVE-2025-33225 2 Linux, Nvidia 2 Linux, Resiliency Extension 2025-12-18 8.4 High
NVIDIA Resiliency Extension for Linux contains a vulnerability in log aggregation, where an attacker could cause predictable log-file names. A successful exploit of this vulnerability may lead to escalation of privileges, code execution, denial of service, information disclosure, and data tampering.
CVE-2025-68156 2025-12-18 7.5 High
Expr is an expression language and expression evaluation for Go. Prior to version 1.17.7, several builtin functions in Expr, including `flatten`, `min`, `max`, `mean`, and `median`, perform recursive traversal over user-provided data structures without enforcing a maximum recursion depth. If the evaluation environment contains deeply nested or cyclic data structures, these functions may recurse indefinitely until exceed the Go runtime stack limit. This results in a stack overflow panic, causing the host application to crash. While exploitability depends on whether an attacker can influence or inject cyclic or pathologically deep data into the evaluation environment, this behavior represents a denial-of-service (DoS) risk and affects overall library robustness. Instead of returning a recoverable evaluation error, the process may terminate unexpectedly. In affected versions, evaluation of expressions that invoke certain builtin functions on untrusted or insufficiently validated data structures can lead to a process-level crash due to stack exhaustion. This issue is most relevant in scenarios where Expr is used to evaluate expressions against externally supplied or dynamically constructed environments; cyclic references (directly or indirectly) can be introduced into arrays, maps, or structs; and there are no application-level safeguards preventing deeply nested input data. In typical use cases with controlled, acyclic data, the issue may not manifest. However, when present, the resulting panic can be used to reliably crash the application, constituting a denial of service. The issue has been fixed in the v1.17.7 versions of Expr. The patch introduces a maximum recursion depth limit for affected builtin functions. When this limit is exceeded, evaluation aborts gracefully and returns a descriptive error instead of panicking. Additionally, the maximum depth can be customized by users via `builtin.MaxDepth`, allowing applications with legitimate deep structures to raise the limit in a controlled manner. Users are strongly encouraged to upgrade to the patched release, which includes both the recursion guard and comprehensive test coverage to prevent regressions. For users who cannot immediately upgrade, some mitigations are recommended. Ensure that evaluation environments cannot contain cyclic references, validate or sanitize externally supplied data structures before passing them to Expr, and/or wrap expression evaluation with panic recovery to prevent a full process crash (as a last-resort defensive measure). These workarounds reduce risk but do not fully eliminate the issue without the patch.
CVE-2025-68297 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ceph: fix crash in process_v2_sparse_read() for encrypted directories The crash in process_v2_sparse_read() for fscrypt-encrypted directories has been reported. Issue takes place for Ceph msgr2 protocol in secure mode. It can be reproduced by the steps: sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure (1) mkdir /mnt/cephfs/fscrypt-test-3 (2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3 (3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3 (4) fscrypt lock /mnt/cephfs/fscrypt-test-3 (5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3 (6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar (7) Issue has been triggered [ 408.072247] ------------[ cut here ]------------ [ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865 ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore [ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+ [ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-5.fc42 04/01/2014 [ 408.072310] Workqueue: ceph-msgr ceph_con_workfn [ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0 [ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8 8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06 fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85 [ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246 [ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38 [ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8 [ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8 [ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000 [ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000) knlGS:0000000000000000 [ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0 [ 408.072336] PKRU: 55555554 [ 408.072337] Call Trace: [ 408.072338] <TASK> [ 408.072340] ? sched_clock_noinstr+0x9/0x10 [ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10 [ 408.072347] ? _raw_spin_unlock+0xe/0x40 [ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830 [ 408.072353] ? __kasan_check_write+0x14/0x30 [ 408.072357] ? mutex_lock+0x84/0xe0 [ 408.072359] ? __pfx_mutex_lock+0x10/0x10 [ 408.072361] ceph_con_workfn+0x27e/0x10e0 [ 408.072364] ? metric_delayed_work+0x311/0x2c50 [ 408.072367] process_one_work+0x611/0xe20 [ 408.072371] ? __kasan_check_write+0x14/0x30 [ 408.072373] worker_thread+0x7e3/0x1580 [ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 408.072378] ? __pfx_worker_thread+0x10/0x10 [ 408.072381] kthread+0x381/0x7a0 [ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 408.072385] ? __pfx_kthread+0x10/0x10 [ 408.072387] ? __kasan_check_write+0x14/0x30 [ 408.072389] ? recalc_sigpending+0x160/0x220 [ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50 [ 408.072394] ? calculate_sigpending+0x78/0xb0 [ 408.072395] ? __pfx_kthread+0x10/0x10 [ 408.072397] ret_from_fork+0x2b6/0x380 [ 408.072400] ? __pfx_kthread+0x10/0x10 [ 408.072402] ret_from_fork_asm+0x1a/0x30 [ 408.072406] </TASK> [ 408.072407] ---[ end trace 0000000000000000 ]--- [ 408.072418] Oops: general protection fault, probably for non-canonical address 0xdffffc00000000 ---truncated---
CVE-2025-33212 1 Nvidia 1 Nemo 2025-12-18 7.3 High
NVIDIA NeMo Framework contains a vulnerability in model loading that could allow an attacker to exploit improper control mechanisms if a user loads a maliciously crafted file. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, denial of service, and data tampering.
CVE-2025-33210 1 Nvidia 1 Isaac Lab 2025-12-18 9 Critical
NVIDIA Isaac Lab contains a deserialization vulnerability. A successful exploit of this vulnerability might lead to code execution.
CVE-2025-68318 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: thead: th1520-ap: set all AXI clocks to CLK_IS_CRITICAL The AXI crossbar of TH1520 has no proper timeout handling, which means gating AXI clocks can easily lead to bus timeout and thus system hang. Set all AXI clock gates to CLK_IS_CRITICAL. All these clock gates are ungated by default on system reset. In addition, convert all current CLK_IGNORE_UNUSED usage to CLK_IS_CRITICAL to prevent unwanted clock gating.
CVE-2025-68313 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add RDSEED fix for Zen5 There's an issue with RDSEED's 16-bit and 32-bit register output variants on Zen5 which return a random value of 0 "at a rate inconsistent with randomness while incorrectly signaling success (CF=1)". Search the web for AMD-SB-7055 for more detail. Add a fix glue which checks microcode revisions. [ bp: Add microcode revisions checking, rewrite. ]
CVE-2025-68303 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: intel: punit_ipc: fix memory corruption This passes the address of the pointer "&punit_ipcdev" when the intent was to pass the pointer itself "punit_ipcdev" (without the ampersand). This means that the: complete(&ipcdev->cmd_complete); in intel_punit_ioc() will write to a wrong memory address corrupting it.
CVE-2025-68285 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: fix potential use-after-free in have_mon_and_osd_map() The wait loop in __ceph_open_session() can race with the client receiving a new monmap or osdmap shortly after the initial map is received. Both ceph_monc_handle_map() and handle_one_map() install a new map immediately after freeing the old one kfree(monc->monmap); monc->monmap = monmap; ceph_osdmap_destroy(osdc->osdmap); osdc->osdmap = newmap; under client->monc.mutex and client->osdc.lock respectively, but because neither is taken in have_mon_and_osd_map() it's possible for client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in client->monc.monmap && client->monc.monmap->epoch && client->osdc.osdmap && client->osdc.osdmap->epoch; condition to dereference an already freed map. This happens to be reproducible with generic/395 and generic/397 with KASAN enabled: BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70 Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305 CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266 ... Call Trace: <TASK> have_mon_and_osd_map+0x56/0x70 ceph_open_session+0x182/0x290 ceph_get_tree+0x333/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> Allocated by task 13305: ceph_osdmap_alloc+0x16/0x130 ceph_osdc_init+0x27a/0x4c0 ceph_create_client+0x153/0x190 create_fs_client+0x50/0x2a0 ceph_get_tree+0xff/0x680 vfs_get_tree+0x49/0x180 do_new_mount+0x1a3/0x2d0 path_mount+0x6dd/0x730 do_mount+0x99/0xe0 __do_sys_mount+0x141/0x180 do_syscall_64+0x9f/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 9475: kfree+0x212/0x290 handle_one_map+0x23c/0x3b0 ceph_osdc_handle_map+0x3c9/0x590 mon_dispatch+0x655/0x6f0 ceph_con_process_message+0xc3/0xe0 ceph_con_v1_try_read+0x614/0x760 ceph_con_workfn+0x2de/0x650 process_one_work+0x486/0x7c0 process_scheduled_works+0x73/0x90 worker_thread+0x1c8/0x2a0 kthread+0x2ec/0x300 ret_from_fork+0x24/0x40 ret_from_fork_asm+0x1a/0x30 Rewrite the wait loop to check the above condition directly with client->monc.mutex and client->osdc.lock taken as appropriate. While at it, improve the timeout handling (previously mount_timeout could be exceeded in case wait_event_interruptible_timeout() slept more than once) and access client->auth_err under client->monc.mutex to match how it's set in finish_auth(). monmap_show() and osdmap_show() now take the respective lock before accessing the map as well.
CVE-2025-68288 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: storage: Fix memory leak in USB bulk transport A kernel memory leak was identified by the 'ioctl_sg01' test from Linux Test Project (LTP). The following bytes were mainly observed: 0x53425355. When USB storage devices incorrectly skip the data phase with status data, the code extracts/validates the CSW from the sg buffer, but fails to clear it afterwards. This leaves status protocol data in srb's transfer buffer, such as the US_BULK_CS_SIGN 'USBS' signature observed here. Thus, this can lead to USB protocols leaks to user space through SCSI generic (/dev/sg*) interfaces, such as the one seen here when the LTP test requested 512 KiB. Fix the leak by zeroing the CSW data in srb's transfer buffer immediately after the validation of devices that skip data phase. Note: Differently from CVE-2018-1000204, which fixed a big leak by zero- ing pages at allocation time, this leak occurs after allocation, when USB protocol data is written to already-allocated sg pages.
CVE-2025-68309 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/AER: Fix NULL pointer access by aer_info The kzalloc(GFP_KERNEL) may return NULL, so all accesses to aer_info->xxx will result in kernel panic. Fix it.
CVE-2025-68300 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/namespace: fix reference leak in grab_requested_mnt_ns lookup_mnt_ns() already takes a reference on mnt_ns. grab_requested_mnt_ns() doesn't need to take an extra reference.
CVE-2025-68281 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: SDCA: bug fix while parsing mipi-sdca-control-cn-list "struct sdca_control" declares "values" field as integer array. But the memory allocated to it is of char array. This causes crash for sdca_parse_function API. This patch addresses the issue by allocating correct data size.