Total
1540 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-53417 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: sl811: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53416 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: isp1362: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2022-50404 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fbdev: fbcon: release buffer when fbcon_do_set_font() failed syzbot is reporting memory leak at fbcon_do_set_font() [1], for commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when vc_resize() failed") missed that the buffer might be newly allocated by fbcon_set_font(). | ||||
| CVE-2023-53415 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: dwc3: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. Note, the root dentry for the debugfs directory for the device needs to be saved so we don't have to keep looking it up, which required a bit more refactoring to properly create and remove it when needed. | ||||
| CVE-2023-53414 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: snic: Fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53413 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: isp116x: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53412 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53411 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: PM: EM: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53410 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: ULPI: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53409 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drivers: base: component: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53408 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: trace/blktrace: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2023-53424 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: fix of_iomap memory leak Smatch reports: drivers/clk/mediatek/clk-mtk.c:583 mtk_clk_simple_probe() warn: 'base' from of_iomap() not released on lines: 496. This problem was also found in linux-next. In mtk_clk_simple_probe(), base is not released when handling errors if clk_data is not existed, which may cause a leak. So free_base should be added here to release base. | ||||
| CVE-2023-53423 | 1 Linux | 1 Linux Kernel | 2025-12-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: objtool: Fix memory leak in create_static_call_sections() strdup() allocates memory for key_name. We need to release the memory in the following error paths. Add free() to avoid memory leak. | ||||
| CVE-2025-1634 | 1 Redhat | 3 Amq Streams, Camel Quarkus, Quarkus | 2025-12-11 | 7.5 High |
| A flaw was found in the quarkus-resteasy extension, which causes memory leaks when client requests with low timeouts are made. If a client request times out, a buffer is not released correctly, leading to increased memory usage and eventual application crash due to OutOfMemoryError. | ||||
| CVE-2023-53330 | 1 Linux | 1 Linux Kernel | 2025-12-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: caif: fix memory leak in cfctrl_linkup_request() When linktype is unknown or kzalloc failed in cfctrl_linkup_request(), pkt is not released. Add release process to error path. | ||||
| CVE-2023-53334 | 1 Linux | 1 Linux Kernel | 2025-12-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: USB: chipidea: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once. | ||||
| CVE-2024-4435 | 1 Dfinity | 1 Stable Structures | 2025-12-10 | 5.9 Medium |
| When storing unbounded types in a BTreeMap, a node is represented as a linked list of "memory chunks". It was discovered recently that when we deallocate a node, in some cases only the first memory chunk is deallocated, and the rest of the memory chunks remain (incorrectly) allocated, causing a memory leak. In the worst case, depending on how a canister uses the BTreeMap, an adversary could interact with the canister through its API and trigger interactions with the map that keep consuming memory due to the memory leak. This could potentially lead to using an excessive amount of memory, or even running out of memory. This issue has been fixed in #212 https://github.com/dfinity/stable-structures/pull/212 by changing the logic for deallocating nodes to ensure that all of a node's memory chunks are deallocated and users are asked to upgrade to version 0.6.4.. Tests have been added to prevent regressions of this nature moving forward. Note: Users of stable-structure < 0.6.0 are not affected. Users who are not storing unbounded types in BTreeMap are not affected and do not need to upgrade. Otherwise, an upgrade to version 0.6.4 is necessary. | ||||
| CVE-2022-50355 | 1 Linux | 1 Linux Kernel | 2025-12-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: staging: vt6655: fix some erroneous memory clean-up loops In some initialization functions of this driver, memory is allocated with 'i' acting as an index variable and increasing from 0. The commit in "Fixes" introduces some clean-up codes in case of allocation failure, which free memory in reverse order with 'i' decreasing to 0. However, there are some problems: - The case i=0 is left out. Thus memory is leaked. - In case memory allocation fails right from the start, the memory freeing loops will start with i=-1 and invalid memory locations will be accessed. One of these loops has been fixed in commit c8ff91535880 ("staging: vt6655: fix potential memory leak"). Fix the remaining erroneous loops. | ||||
| CVE-2021-47147 | 1 Linux | 1 Linux Kernel | 2025-12-10 | 6.2 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: Fix a resource leak in an error handling path If an error occurs after a successful 'pci_ioremap_bar()' call, it must be undone by a corresponding 'pci_iounmap()' call, as already done in the remove function. | ||||
| CVE-2021-47508 | 1 Linux | 1 Linux Kernel | 2025-12-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: free exchange changeset on failures Fstests runs on my VMs have show several kmemleak reports like the following. unreferenced object 0xffff88811ae59080 (size 64): comm "xfs_io", pid 12124, jiffies 4294987392 (age 6.368s) hex dump (first 32 bytes): 00 c0 1c 00 00 00 00 00 ff cf 1c 00 00 00 00 00 ................ 90 97 e5 1a 81 88 ff ff 90 97 e5 1a 81 88 ff ff ................ backtrace: [<00000000ac0176d2>] ulist_add_merge+0x60/0x150 [btrfs] [<0000000076e9f312>] set_state_bits+0x86/0xc0 [btrfs] [<0000000014fe73d6>] set_extent_bit+0x270/0x690 [btrfs] [<000000004f675208>] set_record_extent_bits+0x19/0x20 [btrfs] [<00000000b96137b1>] qgroup_reserve_data+0x274/0x310 [btrfs] [<0000000057e9dcbb>] btrfs_check_data_free_space+0x5c/0xa0 [btrfs] [<0000000019c4511d>] btrfs_delalloc_reserve_space+0x1b/0xa0 [btrfs] [<000000006d37e007>] btrfs_dio_iomap_begin+0x415/0x970 [btrfs] [<00000000fb8a74b8>] iomap_iter+0x161/0x1e0 [<0000000071dff6ff>] __iomap_dio_rw+0x1df/0x700 [<000000002567ba53>] iomap_dio_rw+0x5/0x20 [<0000000072e555f8>] btrfs_file_write_iter+0x290/0x530 [btrfs] [<000000005eb3d845>] new_sync_write+0x106/0x180 [<000000003fb505bf>] vfs_write+0x24d/0x2f0 [<000000009bb57d37>] __x64_sys_pwrite64+0x69/0xa0 [<000000003eba3fdf>] do_syscall_64+0x43/0x90 In case brtfs_qgroup_reserve_data() or btrfs_delalloc_reserve_metadata() fail the allocated extent_changeset will not be freed. So in btrfs_check_data_free_space() and btrfs_delalloc_reserve_space() free the allocated extent_changeset to get rid of the allocated memory. The issue currently only happens in the direct IO write path, but only after 65b3c08606e5 ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range"), and also at defrag_one_locked_target(). Every other place is always calling extent_changeset_free() even if its call to btrfs_delalloc_reserve_space() or btrfs_check_data_free_space() has failed. | ||||